2.1 Miller-Rabin理论基础
Fermat定理 若n是奇素数,a是任意正整数(1≤ a≤ n?1),则 an?1≡1pmod n。[2]
Miller-Rabin算法的理论基础 如果n是一个奇素数,将n?1表示成2s*r的形式,r是奇数,a与n是互素的任何整数,那么ar≡1pmod n或者对某个j(0 ≤ j≤ s?1, j∈Z)等式a2jr≡?1 pmod n成立。[2]
这个理论是由Fermat定理推导而来:n是一个奇素数,则方程 x2≡1pmod n只有±1两个解。
定理 3 设x,y和n是整数,如果x2 = y2pmod n