nlp深度学习代码总结--pytoch

代码总结

文本清洗

去除网址

def remove_URL(text):
    url = re.compile(r'https?://\S+|www\.\S+')
    return url.sub(r'', text)

去除表情符号

def remove_emoji(text):
    emoji_pattern = re.compile(
        '['
        u'\U0001F600-\U0001F64F'  # emoticons
        u'\U0001F300-\U0001F5FF'  # symbols & pictographs
        u'\U0001F680-\U0001F6FF'  # transport & map symbols
        u'\U0001F1E0-\U0001F1FF'  # flags (iOS)
        u'\U00002702-\U000027B0'
        u'\U000024C2-\U0001F251'
        ']+',
        flags=re.UNICODE)
    return emoji_pattern.sub(r'', text)

去掉网页标签

def remove_html(text):
    html = re.compile(r'<.*?>|&([a-z0-9]+|#[0-9]{1,6}|#x[0-9a-f]{1,6});')
    return re.sub(html, '', text)

去掉标点符号

def remove_punct(text):
    #所有的标点字符
    table = str.maketrans('', '', string.punctuation)
    return text.translate(table)

def remove_punct(s):
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    s = re.sub(r"\s+", r" ", s).strip()
    return s

字符编码转换

def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )

去除低频单词

去除停用词

from nltk.corpus import stopwords

def remove_stopword(x):
    return [y for y in x if y not in stopwords.words('english')]
train['temp_list'] = train['temp_list'].apply(lambda x:remove_stopword(x))

文本处理

def clean_text(text):
    '''Make text lowercase, remove text in square brackets,remove links,remove punctuation
    and remove words containing numbers.'''
    text = str(text).lower()
    text = re.sub('\[.*?\]', '', text)
    text = re.sub('https?://\S+|www\.\S+', '', text)
    text = re.sub('<.*?>+', '', text)
    text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
    text = re.sub('\n', '', text)
    text = re.sub('\w*\d\w*', '', text)
    return text

train['text'] = train['text'].apply(lambda x:clean_text(x))
nltk
#语料库和词典
from nltk.corpus import stopwords, wordnet
#分词
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
#频率分布和平滑概率
from nltk.probability import FreqDist

数据分析及可视化

分析数据
#可以看到训练数据的数目以及不同值的数目
train.describe()

#统计某变量不同值的种类
temp = train.groupby('sentiment').count()['text'].reset_index().sort_values(by='text',ascending=False)
#也可直接使用sns可视化
sns.countplot(x='sentiment',data=train)

#迭代pandas读取的数据
for ind,row in train.iterrows()

#创建dataframe观察数据
temp = pd.DataFrame(top.most_common(20))
temp.columns = ['Common_words','count']
temp.style.background_gradient(cmap='Blues')
    
数据集词频统计
from collections import Counter

c = Counter()
#默认按出现顺序输入字典元素
most = counter.most_common()
    
fig = px.bar(temp, x="count", y="Common_words", title='Commmon Words in Selected Text', orientation='h', width=700, height=700,color='Common_words')
两变量之间的关系
iris.plot(kind="scatter", x="SepalLengthCm", y="SepalWidthCm")

sns.jointplot(x="SepalLengthCm", y="SepalWidthCm", data=iris, size=5)

sns.boxplot(x="Species", y="PetalLengthCm", data=iris)

两对变量之间的关系
sns.pairplot(iris.drop("Id", axis=1), hue="Species", size=3)

处理输入数据

去除空白值
train.dropna(inplace=True)
划分数据集
from torch.utils.data import TensorDataset, random_split
	
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
分词转换

bert

tokenizer = BertTokenizer.from_pretrained('bert-large-uncased', do_lower_case=True)

#适配分词器
tokenizer.tokenize(combined[0])
#转换为id,不包含csl,sep等
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(combined[0]))
#编码
tokenizer.encode(combined[0],max_length = 512)

encoded_dict = tokenizer.encode_plus(
text,                      # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
truncation='longest_first', # Activate and control truncation
max_length = 84,           # Max length according to our text data.
pad_to_max_length = True, # Pad & truncate all sentences.
return_attention_mask = True,   # Construct attn. masks.
return_tensors = 'pt',     # Return pytorch tensors.
)
input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])

手动创建tokenizer

#填充
def pad_and_truncate(sequence, maxlen, dtype='int64', padding='post', truncating='post', value=0):
    x = (np.ones(maxlen) * value).astype(dtype)
    if truncating == 'pre':
        trunc = sequence[-maxlen:]
    else:
        trunc = sequence[:maxlen]
    trunc = np.asarray(trunc, dtype=dtype)
    if padding == 'post':
        x[:len(trunc)] = trunc
    else:
        x[-len(trunc):] = trunc
    return x


class Tokenizer(object):
    def __init__(self, max_seq_len, lower=True):
        self.lower = lower
        self.max_seq_len = max_seq_len
        self.word2idx = {}
        self.idx2word = {}
        self.idx = 1
    def fit_on_text(self, text):
        if self.lower:
            text = text.lower()
        words = text.split()
        for word in words:
            if word not in self.word2idx:
                self.word2idx[word] = self.idx
                self.idx2word[self.idx] = word
                self.idx += 1
    def text_to_sequence(self, text, reverse=False, padding='post', truncating='post'):
        if self.lower:
            text = text.lower()
        words = text.split()
        unknownidx = len(self.word2idx)+1
        sequence = [self.word2idx[w] if w in self.word2idx else unknownidx for w in words]
        if len(sequence) == 0:
            sequence = [0]
        if reverse:
            sequence = sequence[::-1]
        return pad_and_truncate(sequence, self.max_seq_len, padding=padding, truncating=truncating)
#使用分词器在对应文本上  
tokenizer.fit_on_text(text)
#保存分词器
pickle.dump(tokenizer, open(dat_fname, 'wb'))
#使用分词器
tokenizer = pickle.load(open(dat_fname, 'rb'))
转换为向量矩阵
embedding_matrix = np.zeros((len(word2idx) + 2, embed_dim))

#使用glove
fname = './glove.twitter.27B/glove.twitter.27B.' + str(embed_dim) + 'd.txt' \ if embed_dim != 300 else './glove.42B.300d.txt' word_vec = _load_word_vec(fname, word2idx=word2idx, embed_dim=embed_dim)

for word, i in word2idx.items():
 vec = word_vec.get(word)
 if vec is not None:
# words not found in embedding index will be all-zeros.
  embedding_matrix[i] = vec
  pickle.dump(embedding_matrix, open(dat_fname, 'wb'))
打包数据
for x in train:
    temp_ids = tokenizer.encode(x, add_special_tokens=True)
    max_len = max(max_len, len(temp_ids))
    input_ids.append(temp_ids)
#转换得到imput_ids和attention_masks
input_ids = np.array([i + [0]*(max_len-len(i)) for i in input_ids])
attention_masks = np.where(input_ids != 0, 1, 0)

dataset = TensorDataset(input_ids, attention_masks, labels)
封装数据

自定义的Dataset需要继承它并且实现两个成员方法:
getitem() 该方法定义用索引(0 到 len(self))获取一条数据或一个样本
len()该方法返回数据集的总长度

from torch.utils.data import Dataset,DataLoader
class MRPCDataset(Dataset):
     def __init__(self, dataset):
        self.data = dataset
     def __getitem__(self, index):
        #这里可以有很多操作
         return self.data[index][0], self.data[index][1], self.data[index][2]
     def __len__(self):
         return len(self.data)
 #实例化 并送入DataLoader
train_dataset = MRPCDataset(train_dataset)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)# 随机:shuffle=True

bert

# TensorDataset对tensor进行打包
train_ids = TensorDataset(a, b) 
for x_train, y_label in train_ids:
    print(x_train, y_label)

    
# dataloader进行数据封装
train_loader = DataLoader(dataset=train_ids, batch_size=4, shuffle=True)
for i, data in enumerate(train_loader, 1):  
# 注意enumerate返回值有两个,一个是序号,一个是数据(包含训练数据和标签)
    x_data, label = data

定义加载模型

bert
model = BertForSequenceClassification.from_pretrained(
'bert-large-uncased', # Use the 124-layer, 1024-hidden, 16-heads, 340M parameters BERT model with an uncased vocab.
num_labels = 2, # The number of output labels--2 for binary classification. You can increase this for multi-class tasks.   
output_attentions = False, # Whether the model returns attentions weights.
output_hidden_states = False, # Whether the model returns all hidden-states.
)
自定义模型
import torch
#自定义前向传播,自动反向传播
class FCModel(torch.nn.Module):#注意继承自 torch.nn.Module
    def __init__(self):
        super(FCModel, self).__init__() # init父类
        #多种方式定义model的层
        self.fc = torch.nn.Linear(in_features=768, out_features=1)
    def forward(self, input):
        #使用model的层
        score = self.fc(input)
        result = torch.sigmoid(score)
        return result

GPU/CPU

#获取设备类型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#让model适应相应设备
model = FCModel()	#模型实例化
model = model.to(device)
#让数据适应相应设备
input_ids = input_ids.to(device)
显卡设置
#多GPU并行运行
model = nn.DataParallel(model)

#清除显存
torch.cuda.empty_cache()

优化器

optimizer = AdamW(model.parameters(),
                  lr = 6e-6, # args.learning_rate
                  eps = 1e-8 # args.adam_epsilon
                )
                
#学习率预热
scheduler = get_linear_schedule_with_warmup(
optimizer, 
num_warmup_steps = 0, # Default value in run_glue.py
num_training_steps = total_steps
)
              
RMSProp

思想:梯度震动较大的项,在下降时,减小其下降速度;对于震动幅度小的项,在下降时,加速其下降速度

RMSprop采用均方根作为分母,可缓解Adagrad学习率下降较快的问题,对于RNN有很好的效果

torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False)

优点:可缓解Adagrad学习率下降较快的问题,并且引入均方根,可以减少摆动,适合处理非平稳目标,对于RNN效果很好

缺点:依然依赖于全局学习率

Adam

将Momentum算法和RMSProp算法结合起来使用的一种算法,既用动量来累积梯度,又使得收敛速度更快同时使得波动的幅度更小,并进行了偏差修正

torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)

优点:
1、对目标函数没有平稳要求,即loss function可以随着时间变化
2、参数的更新不受梯度的伸缩变换影响
3、更新步长和梯度大小无关,只和alpha、beta_1、beta_2有关系。并且由它们决定步长的理论上限
4、更新的步长能够被限制在大致的范围内(初始学习率)
5、能较好的处理噪音样本,能天然地实现步长退火过程(自动调整学习率)
6、很适合应用于大规模的数据及参数的场景、不稳定目标函数、梯度稀疏或梯度存在很大噪声的

训练和评估

for epoch_i in range(0, epochs):
    #
    model.train()
    #model.eval():告诉网络的所有层,你在eval模式,也就是说,像batchNorm和dropout这样的层会工作在eval模式而非training模式
    #model.eval()
	for step, batch in enumerate(train_dataloader):
    	model.zero_grad()
        loss, logits = model(b_input_ids, 
                             token_type_ids=None, 
                             attention_mask=b_input_mask, 
                             labels=b_labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        scheduler.step()

模型保存加载

一般模型
# 保存模型的全部 (大模型不建议)
torch.save(model, "./model_fc.pth")
model = torch.load("./model_fc.pth")
# 只保存各层的参数 (大模型建议)
torch.save(model.state_dict(), "./model_fc.pt")
model = FCModel()#加载前需要构造一个模型实例
model.load_state_dict(torch.load("./model_fc.pt"))
huggingface
#save tokenizer若未修改不用保存
bert_model.save_pretrained('./Fine_tune_BERT/')
#load
bert_model = TFBertModel.from_pretrained('./Fine_tune_BERT/')
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

可视化注意力

def showAttention(input_sentence, output_words, attentions):
    # 用colorbar设置图
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.numpy(), cmap='bone')
    fig.colorbar(cax)

    # 设置坐标
    ax.set_xticklabels([''] + input_sentence.split(' ') +
                       ['<EOS>'], rotation=90)
    ax.set_yticklabels([''] + output_words)

    # 在每个刻度处显示标签
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.show()

def evaluateAndShowAttention(input_sentence):
    output_words, attentions = evaluate(
        encoder1, attn_decoder1, input_sentence)
    print('input =', input_sentence)
    print('output =', ' '.join(output_words))
    showAttention(input_sentence, output_words, attentions)

https://i.loli.net/2021/08/20/L1AfQu6evprKdbM.png

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: cvae-gan-zoos-pytorch-beginner这个词汇代表一个初学者使用PyTorch框架进行CVAE-GAN(生成式对抗网络变分自编码器)的编码器,这个网络可以在数据集中进行分析学习,并将数据转换为可以生成新数据的潜在向量空间。该网络不需要通过监督学习标签分类,而是直接使用数据的分布。这个编码器的目的是从潜在空间中生成新数据。此模型可以用于不同的任务,例如图像生成和语音生成。 为了实现这一目标,这一模型采用了CVAE-GAN网络结构,其中CVAE(条件变分自编码器)被用来建立机器学习模型的潜在空间,GAN(生成式对抗网络)作为一个反馈网络,以实现生成数据的目的。最后,这个模型需要使用PyTorch框架进行编程实现,并对数据集进行分析和处理,以便输入到模型中进行训练。这个编码器是一个比较复杂的模型,因此,初学者需要掌握深度学习知识和PyTorch框架的相关知识,并有一定的编程经验,才能实现这一任务。 总的来说,CVAE-GAN是一个在生成数据方面取得了重大成就的深度学习模型,可以应用于各种领域,例如图像、语音和自然语言处理等。然而,对于初学者来说,这是一个相对复杂的任务,需要掌握相关知识和技能,才能成功实现这一模型。 ### 回答2: cvae-gan-zoos-pytorch-beginner是一些机器学习领域的技术工具,使用深度学习方法来实现动物园场景的生成。这些技术包括:生成式对抗网络(GAN)、变分自编码器(CVAE)和pytorch。GAN是一种基于对抗机制的深度学习网络,它可以训练出生成逼真的场景图像;CVAE也是一种深度学习网络,它可以从潜在空间中提取出高质量的场景特征,并生成与原图像相似的图像;pytorch是一个深度学习框架,它可以支持这些技术的开发和实现。 在这个动物园场景生成的过程中,通过GAN和CVAE的组合使用可以从多个角度来创建逼真而多样化的动物园场景。此外,pytorch提供了很多工具和函数来简化代码编写和管理数据,使得训练过程更加容易和高效。对于初学者们来说,这些技术和框架提供了一个良好的起点,可以探索深度学习和图像处理领域的基础理论和实践方法,有助于了解如何使用技术来生成更好的图像结果。 ### 回答3: CVaE-GAN-ZOOS-PyTorch-Beginner是一种结合了条件变分自编码器(CVaE)、生成对抗网络(GAN)和零样本学习(Zero-Shot Learning)的深度学习框架。它使用PyTorch深度学习库,适合初学者学习和使用。 CVaE-GAN-ZOOS-PyTorch-Beginner的主要目的是提供一个通用的模型结构,以实现Zero-Shot Learning任务。在这种任务中,模型要从未见过的类别中推断标签。CVaE-GAN-ZOOS-PyTorch-Beginner框架旨在使模型能够从已知类别中学习无监督的表示,并从中推断未知类别的标签。 CVaE-GAN-ZOOS-PyTorch-Beginner的结构由两个关键部分组成:生成器和判别器。生成器使用条件变分自编码器生成潜在特征,并进一步生成样本。判别器使用生成的样本和真实样本区分它们是否相似。这样,生成器被迫学习产生真实的样本,而判别器则被迫学习区分真实的样本和虚假的样本。 总的来说,CVaE-GAN-ZOOS-PyTorch-Beginner框架是一个强大的工具,可以用于解决Zero-Shot Learning问题。它是一个易于使用的框架,适合初学者学习和使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值