题目
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例
示例 1:
输入: [2,2,1]
输出: 1
示例 2:
输入: [4,1,2,1,2]
输出: 4
解法
解法1:位运算
int singleNumber(vector<int>& nums) {
int ret = 0;
for(auto e : nums)
{
ret ^= e;
}
return ret;
}
复杂度分析
-
时间复杂度:O(n)O(n),其中 nn 是数组长度。只需要对数组遍历一次。
-
空间复杂度:O(1)O(1)。
解法详解
位运算性质:
任何数和 0 做异或运算,结果仍然是原来的数,即 a 0 = a。
任何数和其自身做异或运算,结果是 0,即 a a = 0。
异或运算满足交换律和结合律,即 a⊕b⊕a=b⊕a⊕a=b⊕(a⊕a)=b⊕0=b。
结合题目与运算性质可知:
对该数组中的所有元素进行异或运算:
通过交换律与结合律可将相同的元素变化到一起
相同的元素进行异或等于0,而只出现一次的元素被剩下
0与0的异或等于0,最终等式变为0只出现一次的元素,结果等于只出现一次的元素
结论:对该数组中的所有元素进行异或运算,得到的结果就是只出现一次的元素,故本题的解法:遍历数组中所有元素并相继进行异或运算。
解法2:排序
int singleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
for(int i = 0;i+1 < nums.size(); i += 2)
{
if(nums[i] != nums[i+1]) return nums[i];
}
return nums[nums.size()-1];
}
};