LeetCode 136 只出现一次的数字

该博客介绍了如何利用位运算在O(n)的时间复杂度和O(1)的空间复杂度内找到数组中只出现一次的元素。解法包括:通过异或操作,利用异或运算的性质将相同元素抵消,最终得到只出现一次的元素。此外,还提供了另一种解法——排序数组,然后检查相邻元素是否相等,找到唯一不同的元素。
摘要由CSDN通过智能技术生成

题目

给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。

说明

你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?

示例

示例 1:

输入: [2,2,1]
输出: 1

示例 2:

输入: [4,1,2,1,2]
输出: 4

解法

解法1:位运算

int singleNumber(vector<int>& nums) {
        int ret = 0;
        for(auto e : nums)
        {
            ret ^= e;
        }

        return ret;
    }

复杂度分析

  • 时间复杂度:O(n)O(n),其中 nn 是数组长度。只需要对数组遍历一次。

  • 空间复杂度:O(1)O(1)。

解法详解

位运算性质:

任何数和 0 做异或运算,结果仍然是原来的数,即 a \bigoplus 0 = a。
任何数和其自身做异或运算,结果是 0,即  a \bigoplus a = 0。
异或运算满足交换律和结合律,即 a⊕b⊕a=b⊕a⊕a=b⊕(a⊕a)=b⊕0=b。

结合题目与运算性质可知:

对该数组中的所有元素进行异或运算:

通过交换律与结合律可将相同的元素变化到一起

相同的元素进行异或等于0,而只出现一次的元素被剩下

0与0的异或等于0,最终等式变为0\bigoplus只出现一次的元素,结果等于只出现一次的元素

结论:对该数组中的所有元素进行异或运算,得到的结果就是只出现一次的元素,故本题的解法:遍历数组中所有元素并相继进行异或运算。

解法2:排序

int singleNumber(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        for(int i = 0;i+1 < nums.size(); i += 2)
        {
            if(nums[i] != nums[i+1])  return nums[i];
        }    
        return nums[nums.size()-1];
    }
};


链接:https://leetcode-cn.com/problems/single-number/solution/zhi-chu-xian-yi-ci-de-shu-zi-by-leetcode-solution/
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值