使用jasmin求解线性对流方程

本文介绍了如何利用JASMIN框架解决线性对流方程,涉及时间离散的显式格式和空间离散的一阶迎风格式。详细步骤包括预处理、具体计算步骤和后处理,解释了时间步长的计算以及在实际程序中的处理方式。
摘要由CSDN通过智能技术生成

1. 线性对流方程:

∂ u ( x ⃗ , t ) ∂ t + ∇ ⋅ ( a ⃗ ) ⋅ u ( x ⃗ , t ) = 0 , x ⃗ ∈ ω \frac{\partial u(\vec{x} ,t)}{\partial t} + \nabla \cdot (\vec{a}) \cdot u(\vec{x}, t) = 0, \quad \vec{x} \in \omega tu(x ,t)+(a )u(x ,t)=0,x ω
( 其 中 , 对 流 速 度 a ⃗ > = 0 , 为 常 量 ) (其中,对流速度 \vec{a} >= 0, 为常量) a >=0,

初始条件:

u ( x ⃗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值