1. 线性对流方程:
∂ u ( x ⃗ , t ) ∂ t + ∇ ⋅ ( a ⃗ ) ⋅ u ( x ⃗ , t ) = 0 , x ⃗ ∈ ω \frac{\partial u(\vec{x} ,t)}{\partial t} + \nabla \cdot (\vec{a}) \cdot u(\vec{x}, t) = 0, \quad \vec{x} \in \omega ∂t∂u(x,t)+∇⋅(a)⋅u(x,t)=0,x∈ω
( 其 中 , 对 流 速 度 a ⃗ > = 0 , 为 常 量 ) (其中,对流速度 \vec{a} >= 0, 为常量) (其中,对流速度a>=0,为常量)
初始条件:
u ( x ⃗