POJ 1990 MooFest(想法题&树状数组)

MooFest
Time Limit:  1000MS
Memory Limit:  30000K

Description

Every year, Farmer John's N (1 <= N <= 20,000) cows attend "MooFest",a social gathering of cows from around the world. MooFest involves a variety of events including haybale stacking, fence jumping, pin the tail on the farmer, and of course, mooing. When the cows all stand in line for a particular event, they moo so loudly that the roar is practically deafening. After participating in this event year after year, some of the cows have in fact lost a bit of their hearing. 

Each cow i has an associated "hearing" threshold v(i) (in the range 1..20,000). If a cow moos to cow i, she must use a volume of at least v(i) times the distance between the two cows in order to be heard by cow i. If two cows i and j wish to converse, they must speak at a volume level equal to the distance between them times max(v(i),v(j)). 

Suppose each of the N cows is standing in a straight line (each cow at some unique x coordinate in the range 1..20,000), and every pair of cows is carrying on a conversation using the smallest possible volume. 

Compute the sum of all the volumes produced by all N(N-1)/2 pairs of mooing cows. 

Input

* Line 1: A single integer, N 

* Lines 2..N+1: Two integers: the volume threshold and x coordinate for a cow. Line 2 represents the first cow; line 3 represents the second cow; and so on. No two cows will stand at the same location. 

Output

* Line 1: A single line with a single integer that is the sum of all the volumes of the conversing cows. 

Sample Input

4
3 1
2 5
2 6
4 3

Sample Output

57

题意抽象:
在数轴上有一列互不相同点xN(1 <= N <= 20,000 , 1 <= xi <= 20,000 ),每个点有一个权值vi(1 <= vi <= 20,000),
对每对点xi,xj,算出|xi - xj| * max{vi,vj},然后求这些结果的和。


思路:

1. 首先将这n个点按照v值从小到大排序(后面说的排在谁的前面,都是基于这个排序)。

这样,当i<j时有max{vi,vj}=vj

2. 用两个树状数组,一个记录比xi小的点的个数a,一个记录比xi小的点的位置之和b,

然后,我们可以快速地求出xi与比xi小的点的所有距离的绝对值之和:a*x[i]-b,

也可以方便地求出xi与比xi大的点的所有距离的绝对值之和:所有距离-b-(i-1-a)*x[i]。

将二者相加,乘上vi,再把所有结果相加,搞定。

复杂度:


反思:

排序很重要,排哪个元素的序更重要。


完整代码:

/*47ms,800KB*/

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 20001
using namespace std;

long long num[2][MAXN];

struct Node
{
	long long v, x;
	bool operator < (const Node& a) const
	{
		return v < a.v;//按音量排序
	}
} node[MAXN];

long long sum(int pos, int d)
{
	long long ans = 0;
	while (pos > 0)
	{
		ans += num[d][pos];
		pos -= -pos & pos;
	}
	return ans;
}

void update(int pos, long long v, int d)
{
	while (pos < MAXN)
	{
		num[d][pos] += v;
		pos += -pos & pos;
	}
}

int main()
{
	int n;
	scanf("%d", &n);
	memset(num, 0, sizeof(num));
	for (int i = 1; i <= n; i++)
		scanf("%lld%lld", &node[i].v, &node[i].x);
	sort(node + 1, node + 1 + n);
	
	long long a, b, ans = 0;
	for (int i = 1; i < n;)
	{
		update(node[i].x, 1, 0);//有点,就+1
		update(node[i].x, node[i].x, 1);//把位置xi放到树状数组b中
		a = sum(node[++i].x, 0);
		b = sum(node[i].x, 1);
		//稍微化简了下
		ans += (sum(MAXN - 1, 1) - (b << 1) - (i - 1 - (a << 1)) * node[i].x) * node[i].v;
	}
	printf("%lld\n", ans);
	return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ 2182是一道使用树状数组解决的目,目要求对给定的n个数进行排序,并且输出每个数在排序后的相对位置。树状数组是一种用来高效处理前缀和问数据结构。 根据引用中的描述,我们可以通过遍历数组a,对于每个元素a[i],可以使用二分查找找到a到a[i-1]中小于a[i]的数的个数。这个个数就是它在排序后的相对位置。 代码中的query函数用来求前缀和,add函数用来更新树状数组。在主函数中,我们从后往前遍历数组a,通过二分查找找到每个元素在排序后的相对位置,并将结果存入ans数组中。 最后,我们按顺序输出ans数组的元素即可得到排序后的相对位置。 参考代码如下: ```C++ #include <iostream> #include <cstdio> using namespace std; int n, a += y; } } int main() { scanf("%d", &n); f = 1; for (int i = 2; i <= n; i++) { scanf("%d", &a[i]); f[i = i & -i; } for (int i = n; i >= 1; i--) { int l = 1, r = n; while (l <= r) { int mid = (l + r) / 2; int k = query(mid - 1); if (a[i > k) { l = mid + 1; } else if (a[i < k) { r = mid - 1; } else { while (b[mid]) { mid++; } ans[i = mid; b[mid = true; add(mid, -1); break; } } } for (int i = 1; i <= n; i++) { printf("%d\n", ans[i]); } return 0; } ``` 这段代码使用了树状数组来完成目要求的排序功能,其中query函数用来求前缀和,add函数用来更新树状数组。在主函数中,我们从后往前遍历数组a,通过二分查找找到每个元素在排序后的相对位置,并将结果存入ans数组中。最后,我们按顺序输出ans数组的元素即可得到排序后的相对位置。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [poj2182Lost Cows——树状数组快速查找](https://blog.csdn.net/aodan5477/article/details/102045839)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [poj_2182 线段树/树状数组](https://blog.csdn.net/weixin_34138139/article/details/86389799)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值