这题蛮经典的,写个题解好了……
题意是说,给定n条线段,保证输入时各坐标至多有两位小数,且线段长度均非零。现在要把共线且有重叠部分的线段全部合并,问最后最少能剩下多少条线段。
首先自然在输入的时候要把所有坐标乘以100变成整数以保证精度。对于每条线段的两个端点A与B,首先保证水平序上A<B,这之后就可以求出方向向量C(保证C两个分量互质)以及AB延长线上距离Y轴最近的点D。那么按照C和D我们就可以将所有的线段分类,其中每一类表示这些线段所在直线都是同一条直线。如果要合并线段,那么这些线段必然位于同一类之中。最后对于同一类而言,按照首端点的x(或y,如果x相同时)排序,再线性判断即可。
以下是利用map和vector实现的代码
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<math.h>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{
if(b==0) return abs(a);
return gcd(b,a%b);
}
struct point
{
ll x,y;
point(ll x=0,ll y=0):x(x),y(y){}
void read(){double xt,yt;scanf("%lf %lf",&xt,&yt);x=xt*100+0.1;y=yt*100+0.1;}
};
point operator +(point a,point b){return point(a.x+b.x,a.y+b.y);}
point operator -(point a,point b){return point(a.x-b.x,a.y-b.y);}
point operator *(point a,ll b){return point(a.x*b,a.y*b);}
point operator /(point a,ll b){return point(a.x/b,a.y/b);}
bool operator <(point a,point b){return a.x<b.x||(a.x==b.x&&a.y<b.y);}
bool operator ==(point a,point b){return a.x==b.x&&a.y==b.y;}
struct line
{
point a,b,c,d;
void read(){a.read();b.read();if(b<a) swap(a,b);}
} l[10005];
bool operator <(line a,line b)
{
if(!(a.c==b.c)) return a.c<b.c;
return a.d<b.d;
}
map<line,int> ma;
vector<int> ve[10005];
vector<ll> vt;
int n;
bool cmp(int i,int j)
{
return l[i].a<l[j].a;
}
int main()
{
int i,j;
while(scanf("%d",&n)!=EOF&&n)
{
for(i=0;i<n;i++) l[i].read(),ve[i+1].clear();
ma.clear();
int nu=0;
for(i=0;i<n;i++)
{
l[i].c=l[i].b-l[i].a;
ll d=gcd(l[i].c.x,l[i].c.y);
l[i].c=l[i].c/d;
ll te;
if(l[i].c.x) te=l[i].a.x/l[i].c.x;
else te=l[i].a.y/l[i].c.y;
l[i].d=l[i].a-l[i].c*te;
if(ma.find(l[i])==ma.end()) ma[l[i]]=(++nu);
int id=ma[l[i]];
ve[id].push_back(i);
}
int res=0;
for(i=1;i<=nu;i++)
{
if(ve[i].size()==1) {++res;continue;}
sort(ve[i].begin(),ve[i].end(),cmp);
vt.clear();
if(l[ve[i][0]].a.x!=l[ve[i][0]].b.x) for(j=0;j<ve[i].size();j++) vt.push_back(l[ve[i][j]].a.x),vt.push_back(l[ve[i][j]].b.x);
else for(j=0;j<ve[i].size();j++) vt.push_back(l[ve[i][j]].a.y),vt.push_back(l[ve[i][j]].b.y);
++res;ll en=vt[1];
for(j=2;j<vt.size();j+=2)
{
if(en<vt[j]) ++res;
en=max(vt[j+1],en);
}
}
printf("%d\n",res);
}
return 0;
}