Codeforces 259 Div.1 B
题意是说,给一个数列a[1...n],n<=100,1<=a[i]<=30.求一个数列b[1...n], 使得sum(|a[i]-b[i]|)最小,且b[1...n]两两互素.
思路就是dp.开一个数组dp[101][2^16](取16是因为对于最佳方案我们总可以取b[i]<=2*a[i]-1,故之牵涉到不超过53的所有素数).对于每个i,枚举所有b[i]可取的值j(j在1~2*a[i]-1中),用一个数t存取这个j用到的素数的状态.那么为了使b[1...n]互素,我们考虑所有使k&t=0状态k即可.说得可能不够清楚,看代码应该更好理解.
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include <bitset>
using namespace std;
#define sqr(x) (x)*(x)
typedef long long ll;
const int maxm=65550,maxn=105;
const ll mod=1000000007;
int n,m;
int a[maxn],b[maxn],dp[maxn][maxm],up[maxn][maxm][2]={0};
int p[25]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59};
int main()
{
int i,j,k,l;
scanf("%d",&n);
for(i=1;i<=n;i++) scanf("%d",a+i);
memset(dp[0],0,sizeof(dp[0]));
for(i=1;i<=n;i++) for(j=0;j<maxm;j++) dp[i][j]=1000000;
for(i=1;i<=n;i++)
{
for(j=1;j<=2*a[i]-1;j++)
{
int tt=0;
for(k=0;k<16;k++)
{
if(j%p[k]==0) tt|=(1<<k);
if(j<p[k]) break;
}
for(k=0;k<(1<<16);k++)
{
if(k&tt) continue;
if(dp[i][k|tt]>dp[i-1][k]+abs(a[i]-j))
{
dp[i][k|tt]=dp[i-1][k]+abs(a[i]-j);
up[i][k|tt][0]=j;up[i][k|tt][1]=k;
}
}
}
}
for(j=0,i=1;i<(1<<16);i++) if(dp[n][i]<dp[n][j]) j=i;
b[n]=up[n][j][0];
for(i=n-1;i>=1;i--)
{
j=up[i+1][j][1];
b[i]=up[i][j][0];
}
for(i=1;i<=n;i++) printf("%d%c",b[i],i==n?'\n':' ');
return 0;
}