题意:有一面长度为10^7的墙,依次往上面贴N张海报,每个海报占据一个区间[L, R],并且后贴的会盖住先贴的。现在依次给出N张海报占据的区间,求最后能看到几张海报。(完全被盖住就看不到了)
N <=10000
这题虽然出现在树堆练习题当中,然而我并没有想出如何用树堆……似乎只是用线段树就可以了。
思路就是,对于海报1~N,如果海报i占据一个区间[L, R],就对这个区间赋值为i(用赋值标记),后来的标记覆盖之前的标记。最后统计的时候,开一个bool数组visible统计各个海报是否出现。对整棵线段树DFS一遍,如果遇到赋值标记(称为setv)不为0,意味着这个子区间已经全被赋值为setv,那么就把setv的出现记录到visible当中。最后遍历visible即可。
还有就是这题需要离散化(对长为10^7的区间开线段树太大了,然而海报只有10000张,所以坐标值只有20000个)。于是把各个海报的坐标离散化到20000以内,然后对区间[1, 20000]开线段树就可以了。注意重复的坐标值在离散化之后仍然需要是一样的值,因此求出rank -> pos的映射之后,求pos -> rank的映射不是简单的反函数,需要判断与前一个rank是否相等。(就是后缀数组里面rank的求法……)
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#define LC 2*o
#define RC 2*o+1
using namespace std;
int N;
int setv[80007]={};
void pushdown(int o)
{
if(setv[o] > 0) setv[LC] = setv[RC] = setv[o];
setv[o] = 0;
}
// op interval = [y1, y2]
void Set(int o, int l, int r, int y1, int y2, int val)
{
if(y1 <= l && r <= y2)
{
setv[o] = val;
return;
}
pushdown(o);
int m = (l+r)/2;
if(y1 <= m) Set(LC, l, m, y1, y2, val);
if(y2 >= m+1) Set(RC, m+1, r, y1, y2, val);
}
bool visible[10007]={};
void stat(int o, int l, int r)
{
if(setv[o] > 0)
{
visible[setv[o]] = true;
return;
}
if(l == r) return;
int m = (l+r)/2;
stat(LC, l, m);
stat(RC, m+1, r);
}
int S[20007]={}; //start and end
int sa[20007]={};
int rank[20007]={}; //start and end (discrete)
bool cmp(int i, int j)
{
return S[i] < S[j];
}
int main()
{
int C;
scanf("%d", &C);
while(C--)
{
memset(setv, 0, sizeof(setv));
memset(visible, 0, sizeof(visible));
scanf("%d", &N);
for(int i = 1; i <= N; i++)
{
int s,e;
scanf("%d%d", &S[2*i-1], &S[2*i]);
}
// discretion
for(int i = 1; i <= 2*N; i++) sa[i] = i;
sort(sa+1, sa+2*N+1, cmp);
int p = 0;
for(int i = 1; i <= 2*N; i++)
{
if(S[sa[i]] == S[sa[i-1]]) rank[sa[i]] = p;
else rank[sa[i]] = ++p;
}
for(int i = 1; i <= N; i++) Set(1, 1, 20000, rank[2*i-1], rank[2*i], i);
stat(1, 1, 20000);
int cnt = 0;
for(int i = 1; i <= N; i++)
if(visible[i]) cnt++;
printf("%d\n", cnt);
}
return 0;
}