Python与机器学习
曹栩珩
研究方向:光谱计算成像、红外基准测量。常用环境与配置:Python 3.8|Paddle 2.3|Torch 1.8|OpenCV 4.4|Matlab r2018a
展开
-
Python机器学习-搭建神经网络以及数据集引入和断点续存
前言本文旨在通过Python编程角度进行机器学习神经网络的引导,需要掌握基础的全连接神经网络基础,这包括了神经网络全连接层的结构,权重模板与偏置的作用,节点的处理方法。在掌握这些知识之后,本文将从代码的角度实现一个完整的全连接神经网络,这包括了超参数的调试、优化器的选择、损失函数的选择以及损失函数的正则化。库与函数基础在进行库的安装前,请保证你的Python版本在3.5-3.7版本之间,否则截至目前,本文所需要的库无法支持更高版本。库的安装本文所需要的库为numpy与tensorflow,本节将引原创 2020-07-27 12:07:52 · 1211 阅读 · 0 评论 -
Python实现神经网络(零基础篇)
前言本文旨在对于机器语言完全零基础但较有兴趣或对神经网络较浅了解的朋友,通过阐述对神经网络的基础讲解以及Python的基本操作,来利用Python实现简单的神经网络;并以此为基础,在未来方向的几篇文章将以Python为工具,应用几种较为典型的神经网络以及如何对神经网络进行全方位的优化。本文涉及到数列的简单计算、函数以及类的定义、全连结神经网络的运算方式、损失函数、计算图以及随机梯度下降法。Python基础本章节主要阐述了Python的安装以及所需库的安装和介绍Python的安装(Windows)P原创 2020-07-17 15:37:18 · 26977 阅读 · 23 评论