快速幂算法详解
快速幂(Fast Power或Exponentiation by Squaring)是一种能够在 O(logn)O(\log n)O(logn) 时间复杂度内高效计算幂次(如 ana^nan)的算法。相比于朴素的逐次相乘(需要 O(n)O(n)O(n) 次乘法),快速幂极大地减少了运算次数,尤其当指数 nnn 较大时更显优势。以下从原理、实现思路及具体示例三个方面详细讲解。
一、快速幂的基本原理
计算 ana^nan 时,可以利用以下两个数学性质:
-
幂的拆分
- an=a×an−1a^n = a \times a^{n-1}an=a×an−1,如果 nnn 是奇数;
- an=(an/2)2a^n = (a^{n/2})^2an=(an/2)2,如果 nnn 是偶数。
-
平方快速翻倍
如果已经知道 aka^kak,那么:
a2k=(ak)2 a^{2k} = (a^k)^2 a

最低0.47元/天 解锁文章
2722

被折叠的 条评论
为什么被折叠?



