三明治定理
三明治定理(Sandwich Theorem)又称夹逼定理或夹逼准则,是数学分析中的一个重要定理。它描述了当三个函数在某一区间上满足特定关系时,中间函数的极限可以通过两个外侧函数的极限确定。这个定理广泛应用于极限和连续性的证明中。
具体来说,设 aaa 是一个实数或无穷大,假设在 aaa 的某个去心邻域上,三个函数 f(x)f(x)f(x)、g(x)g(x)g(x) 和 h(x)h(x)h(x) 满足以下关系:
f(x)≤g(x)≤h(x)f(x) \leq g(x) \leq h(x)f(x)≤g(x)≤h(x)
如果 limx→af(x)=limx→ah(x)=L\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = Llimx→af(x)=limx→ah(x)=L,那么:
limx→ag(x)=L\lim_{x \to a} g(x) = Lx→alimg(x)=L
证明过程
- 假设:在 xxx 趋近于 aaa 的过程中,f(x)≤g(x)≤h(x)f(x) \leq g(x) \leq h(x)f(x)≤g(x)≤h(x) 恒成立。
- 外侧函数的极限:由于 limx→af(x)=limx→ah(x)=L\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = Llimx→af(x)=limx→ah(x)=L,所以对于任意 ϵ>0\epsilon > 0ϵ>0,存在 δ1>0\delta_1 > 0δ1>0 和 δ2>0\delta_2 > 0δ2>0,使得当 0<∣x−a∣<δ10 < |x - a| < \delta_10<∣x−a∣<δ1 时,有 ∣f(x)−L∣<ϵ|f(x) - L| < \epsilon∣f(x)−L∣<ϵ,以及当 0<∣x−a∣<δ20 < |x - a| < \delta_20<∣x−a∣<δ2 时,有 ∣h(x)−L∣<ϵ|h(x) - L| < \epsilon∣h(x)−L∣<ϵ。
- 选择最小的邻域:取 δ=min(δ1,δ2)\delta = \min(\delta_1, \delta_2)δ=min(δ1,δ2),则对于 0<∣x−a∣<δ0 < |x - a| < \delta0<∣x−a∣<δ,同时有 ∣f(x)−L∣<ϵ|f(x) - L| < \epsilon∣f(x)−L∣<ϵ 和 ∣h(x)−L∣<ϵ|h(x) - L| < \epsilon∣h(x)−L∣<ϵ。
- 夹逼关系的应用:由于 f(x)≤g(x)≤h(x)f(x) \leq g(x) \leq h(x)f(x)≤g(x)≤h(x),根据上述不等式,可以得出 L−ϵ<f(x)≤g(x)≤h(x)<L+ϵL - \epsilon < f(x) \leq g(x) \leq h(x) < L + \epsilonL−ϵ<f(x)≤g(x)≤h(x)<L+ϵ,因此 L−ϵ<g(x)<L+ϵL - \epsilon < g(x) < L + \epsilonL−ϵ<g(x)<L+ϵ。
- 极限结论:由此可得 ∣g(x)−L∣<ϵ|g(x) - L| < \epsilon∣g(x)−L∣<ϵ,说明 limx→ag(x)=L\lim_{x \to a} g(x) = Llimx→ag(x)=L。
示例
例子1:证明 limx→0x2sin(1x)=0\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0limx→0x2sin(x1)=0
直接求解这个极限可能比较困难,但利用三明治定理可以简化过程。
- 找到两个易于处理的函数:我们知道对于任何 x≠0x \neq 0x=0,有 −1≤sin(1x)≤1-1 \leq \sin\left(\frac{1}{x}\right) \leq 1−1≤sin(x1)≤1。
- 构造不等式:乘以 x2x^2x2 得到 −x2≤x2sin(1x)≤x2-x^2 \leq x^2 \sin\left(\frac{1}{x}\right) \leq x^2−x2≤x2sin(x1)≤x2。
- 确定极限:limx→0(−x2)=0\lim_{x \to 0} (-x^2) = 0limx→0(−x2)=0 和 limx→0(x2)=0\lim_{x \to 0} (x^2) = 0limx→0(x2)=0。
- 应用三明治定理:由三明治定理得 limx→0x2sin(1x)=0\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0limx→0x2sin(x1)=0。
例子2:证明 limx→0xcos(1x)=0\lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0limx→0xcos(x1)=0
- 找到两个易于处理的函数:我们知道对于任何 x≠0x \neq 0x=0,有 −1≤cos(1x)≤1-1 \leq \cos\left(\frac{1}{x}\right) \leq 1−1≤cos(x1)≤1。
- 构造不等式:乘以 xxx 得到 −x≤xcos(1x)≤x-x \leq x \cos\left(\frac{1}{x}\right) \leq x−x≤xcos(x1)≤x。
- 确定极限:limx→0(−x)=0\lim_{x \to 0} (-x) = 0limx→0(−x)=0 和 limx→0(x)=0\lim_{x \to 0} (x) = 0limx→0(x)=0。
- 应用三明治定理:由三明治定理得 limx→0xcos(1x)=0\lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0limx→0xcos(x1)=0。
例子3:证明 limx→∞sinxx=0\lim_{x \to \infty} \frac{\sin x}{x} = 0limx→∞xsinx=0
- 找到两个易于处理的函数:我们知道对于任何 xxx,有 −1≤sinx≤1-1 \leq \sin x \leq 1−1≤sinx≤1。
- 构造不等式:除以 xxx 得到 −1x≤sinxx≤1x-\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}−x1≤xsinx≤x1。
- 确定极限:limx→∞(−1x)=0\lim_{x \to \infty} (-\frac{1}{x}) = 0limx→∞(−x1)=0 和 limx→∞(1x)=0\lim_{x \to \infty} (\frac{1}{x}) = 0limx→∞(x1)=0。
- 应用三明治定理:由三明治定理得 limx→∞sinxx=0\lim_{x \to \infty} \frac{\sin x}{x} = 0limx→∞xsinx=0。
例子4:证明 limx→0x2cos(1x2)=0\lim_{x \to 0} x^2 \cos\left(\frac{1}{x^2}\right) = 0limx→0x2cos(x21)=0
- 找到两个易于处理的函数:我们知道对于任何 x≠0x \neq 0x=0,有 −1≤cos(1x2)≤1-1 \leq \cos\left(\frac{1}{x^2}\right) \leq 1−1≤cos(x21)≤1。
- 构造不等式:乘以 x2x^2x2 得到 −x2≤x2cos(1x2)≤x2-x^2 \leq x^2 \cos\left(\frac{1}{x^2}\right) \leq x^2−x2≤x2cos(x21)≤x2。
- 确定极限:limx→0(−x2)=0\lim_{x \to 0} (-x^2) = 0limx→0(−x2)=0 和 limx→0(x2)=0\lim_{x \to 0} (x^2) = 0limx→0(x2)=0。
- 应用三明治定理:由三明治定理得 limx→0x2cos(1x2)=0\lim_{x \to 0} x^2 \cos\left(\frac{1}{x^2}\right) = 0limx→0x2cos(x21)=0。
通过这些例子可以看到,三明治定理在处理涉及振荡或复杂表达式的极限问题时非常有用。它为我们提供了一种简洁的方法,通过夹逼关系快速求解极限。
46

被折叠的 条评论
为什么被折叠?



