数学基础 -- 三明治定理(夹逼定理)

三明治定理

三明治定理(Sandwich Theorem)又称夹逼定理或夹逼准则,是数学分析中的一个重要定理。它描述了当三个函数在某一区间上满足特定关系时,中间函数的极限可以通过两个外侧函数的极限确定。这个定理广泛应用于极限和连续性的证明中。

具体来说,设 aaa 是一个实数或无穷大,假设在 aaa 的某个去心邻域上,三个函数 f(x)f(x)f(x)g(x)g(x)g(x)h(x)h(x)h(x) 满足以下关系:

f(x)≤g(x)≤h(x)f(x) \leq g(x) \leq h(x)f(x)g(x)h(x)

如果 lim⁡x→af(x)=lim⁡x→ah(x)=L\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = Llimxaf(x)=limxah(x)=L,那么:

lim⁡x→ag(x)=L\lim_{x \to a} g(x) = Lxalimg(x)=L

证明过程

  1. 假设:在 xxx 趋近于 aaa 的过程中,f(x)≤g(x)≤h(x)f(x) \leq g(x) \leq h(x)f(x)g(x)h(x) 恒成立。
  2. 外侧函数的极限:由于 lim⁡x→af(x)=lim⁡x→ah(x)=L\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = Llimxaf(x)=limxah(x)=L,所以对于任意 ϵ>0\epsilon > 0ϵ>0,存在 δ1>0\delta_1 > 0δ1>0δ2>0\delta_2 > 0δ2>0,使得当 0<∣x−a∣<δ10 < |x - a| < \delta_10<xa<δ1 时,有 ∣f(x)−L∣<ϵ|f(x) - L| < \epsilonf(x)L<ϵ,以及当 0<∣x−a∣<δ20 < |x - a| < \delta_20<xa<δ2 时,有 ∣h(x)−L∣<ϵ|h(x) - L| < \epsilonh(x)L<ϵ
  3. 选择最小的邻域:取 δ=min⁡(δ1,δ2)\delta = \min(\delta_1, \delta_2)δ=min(δ1,δ2),则对于 0<∣x−a∣<δ0 < |x - a| < \delta0<xa<δ,同时有 ∣f(x)−L∣<ϵ|f(x) - L| < \epsilonf(x)L<ϵ∣h(x)−L∣<ϵ|h(x) - L| < \epsilonh(x)L<ϵ
  4. 夹逼关系的应用:由于 f(x)≤g(x)≤h(x)f(x) \leq g(x) \leq h(x)f(x)g(x)h(x),根据上述不等式,可以得出 L−ϵ<f(x)≤g(x)≤h(x)<L+ϵL - \epsilon < f(x) \leq g(x) \leq h(x) < L + \epsilonLϵ<f(x)g(x)h(x)<L+ϵ,因此 L−ϵ<g(x)<L+ϵL - \epsilon < g(x) < L + \epsilonLϵ<g(x)<L+ϵ
  5. 极限结论:由此可得 ∣g(x)−L∣<ϵ|g(x) - L| < \epsilong(x)L<ϵ,说明 lim⁡x→ag(x)=L\lim_{x \to a} g(x) = Llimxag(x)=L

示例

例子1:证明 lim⁡x→0x2sin⁡(1x)=0\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0limx0x2sin(x1)=0

直接求解这个极限可能比较困难,但利用三明治定理可以简化过程。

  1. 找到两个易于处理的函数:我们知道对于任何 x≠0x \neq 0x=0,有 −1≤sin⁡(1x)≤1-1 \leq \sin\left(\frac{1}{x}\right) \leq 11sin(x1)1
  2. 构造不等式:乘以 x2x^2x2 得到 −x2≤x2sin⁡(1x)≤x2-x^2 \leq x^2 \sin\left(\frac{1}{x}\right) \leq x^2x2x2sin(x1)x2
  3. 确定极限lim⁡x→0(−x2)=0\lim_{x \to 0} (-x^2) = 0limx0(x2)=0lim⁡x→0(x2)=0\lim_{x \to 0} (x^2) = 0limx0(x2)=0
  4. 应用三明治定理:由三明治定理得 lim⁡x→0x2sin⁡(1x)=0\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0limx0x2sin(x1)=0

例子2:证明 lim⁡x→0xcos⁡(1x)=0\lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0limx0xcos(x1)=0

  1. 找到两个易于处理的函数:我们知道对于任何 x≠0x \neq 0x=0,有 −1≤cos⁡(1x)≤1-1 \leq \cos\left(\frac{1}{x}\right) \leq 11cos(x1)1
  2. 构造不等式:乘以 xxx 得到 −x≤xcos⁡(1x)≤x-x \leq x \cos\left(\frac{1}{x}\right) \leq xxxcos(x1)x
  3. 确定极限lim⁡x→0(−x)=0\lim_{x \to 0} (-x) = 0limx0(x)=0lim⁡x→0(x)=0\lim_{x \to 0} (x) = 0limx0(x)=0
  4. 应用三明治定理:由三明治定理得 lim⁡x→0xcos⁡(1x)=0\lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0limx0xcos(x1)=0

例子3:证明 lim⁡x→∞sin⁡xx=0\lim_{x \to \infty} \frac{\sin x}{x} = 0limxxsinx=0

  1. 找到两个易于处理的函数:我们知道对于任何 xxx,有 −1≤sin⁡x≤1-1 \leq \sin x \leq 11sinx1
  2. 构造不等式:除以 xxx 得到 −1x≤sin⁡xx≤1x-\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}x1xsinxx1
  3. 确定极限lim⁡x→∞(−1x)=0\lim_{x \to \infty} (-\frac{1}{x}) = 0limx(x1)=0lim⁡x→∞(1x)=0\lim_{x \to \infty} (\frac{1}{x}) = 0limx(x1)=0
  4. 应用三明治定理:由三明治定理得 lim⁡x→∞sin⁡xx=0\lim_{x \to \infty} \frac{\sin x}{x} = 0limxxsinx=0

例子4:证明 lim⁡x→0x2cos⁡(1x2)=0\lim_{x \to 0} x^2 \cos\left(\frac{1}{x^2}\right) = 0limx0x2cos(x21)=0

  1. 找到两个易于处理的函数:我们知道对于任何 x≠0x \neq 0x=0,有 −1≤cos⁡(1x2)≤1-1 \leq \cos\left(\frac{1}{x^2}\right) \leq 11cos(x21)1
  2. 构造不等式:乘以 x2x^2x2 得到 −x2≤x2cos⁡(1x2)≤x2-x^2 \leq x^2 \cos\left(\frac{1}{x^2}\right) \leq x^2x2x2cos(x21)x2
  3. 确定极限lim⁡x→0(−x2)=0\lim_{x \to 0} (-x^2) = 0limx0(x2)=0lim⁡x→0(x2)=0\lim_{x \to 0} (x^2) = 0limx0(x2)=0
  4. 应用三明治定理:由三明治定理得 lim⁡x→0x2cos⁡(1x2)=0\lim_{x \to 0} x^2 \cos\left(\frac{1}{x^2}\right) = 0limx0x2cos(x21)=0

通过这些例子可以看到,三明治定理在处理涉及振荡或复杂表达式的极限问题时非常有用。它为我们提供了一种简洁的方法,通过夹逼关系快速求解极限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值