Rk3588 onnx转rknn,出现 No module named ‘rknn‘

一、操作步骤:

rk3588 需要将yolo11 的模型onnx转rknn。

https://github.com/airockchip/rknn_model_zoo/tree/main/examples/yolo11

这个是用yolo11训练的模型,有80种类型。

完整下载下来后,在按文档描述下载模型下来: 

 

然后进入到python文件夹

进行转换:

 输入:

 

 二、解决办法:

https://github.com/airockchip/rknn-toolkit2 下载最新rknn 库。下载完成后,进入rknn-toolkit2-master目录

 执行: 

pip3 install --user -r rknn-toolkit2/packages/x86_64/requirements_cp312-2.3.0.txt

 

安装下载完成后,执行:

pip3 install --user rknn-toolkit2/packages/x86_64/rknn_toolkit2-2.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

 

三、安装完成后验证: 

在终端输入python,然后引用rknn 模块:

from rknn.api import RKNN

如图:

 这样就是没有问题的 

 

 

 

 

<think>嗯,用户在执行pip install models的时候遇到了错误。错误信息显示在安装过程中执行setup.py时出现了ModuleNotFoundError: No module named 'base'。首先,我需要分析这个错误的原因。 用户使用的命令是在一个特定的Python环境(toolkit2_1.6)下运行的,路径看起来和RK3566的开发工具有关,可能是在处理ONNXRKNN模型的过程中。用户尝试安装的包是models,但报错提示在导入时找不到base模块。 首先,我应该检查PyPI上的models包。访问PyPI网站,搜索models,看看是否存在这个包。查了一下,发现确实有一个models包,版本0.9.3,但最近一次更新是2021年,可能已经不维护了。这个包的setup.py中尝试导入models模块,而安装过程中还没有安装依赖,导致无法找到base模块,这显然是一个循环依赖的问题。也就是说,安装脚本本身需要依赖尚未安装的包,导致安装失败。 接下来,用户的实际需求是什么?用户可能在运行某个YOLOv5 Face相关的项目,需要安装models这个包。但根据错误信息,直接安装PyPI上的models包不可行。这时候应该考虑这个models是否指代特定的库,比如TensorFlow的tf-models-official,或者可能是YOLOv5 Face项目自身需要的自定义模块。 查看YOLOv5 Face的文档或源码,发现YOLOv5项目通常使用自己的模型定义,可能不需要单独安装models包。用户可能误解了安装步骤,或者项目需要克隆源码后安装依赖。例如,YOLOv5通常需要从GitHub克隆仓库,然后运行pip install -r requirements.txt。 因此,正确的解决方法是建议用户检查项目文档,确认是否需要安装models,或者是否应该通过Git克隆仓库并安装依赖。此外,直接安装PyPI的models包不可行的情况下,可能需要从源码安装,但需要解决setup.py中的导入问题,比如修改导入语句,但这对于普通用户来说可能比较困难。 另外,用户可能使用了虚拟环境,需要确认是否激活了正确的环境,或者是否存在Python版本兼容性问题。不过根据错误信息,更可能的是包本身的问题。 总结下来,应该建议用户参考项目文档,使用正确的安装方式,如克隆仓库并安装requirements.txt中的依赖,而不是直接安装models包。如果用户确实需要这个models包,可能需要联系维护者或寻找替代方案。</think>根据错误信息分析,这是安装 `models` 包时出现的依赖冲突和语法兼容性问题。以下是逐步解决方案: --- ### **步骤 1:分析错误原因** 错误核心是 `ModuleNotFoundError: No module named 'base'`,这是因为 `models` 包的 `setup.py` 文件尝试导入一个未安装的 `base` 模块。此问题通常由以下原因导致: - **包版本过旧**:PyPI 上的 `models` 包(0.9.3)最后一次更新是 2021 年,可能与新环境不兼容。 - **依赖循环**:`setup.py` 中直接引用了未安装的自身模块,导致安装前无法解析依赖。 --- ### **步骤 2:确认是否需要安装此包** 根据路径 `yolov5face/python`,推测你正在使用 **YOLOv5 Face 模型**。如果是: - **此包非必需**:YOLOv5 Face 的代码库通常自带模型定义,不需要额外安装 `models`。 - **正确做法**:应通过项目自带的 `requirements.txt` 安装依赖: ```bash cd yolov5face/python pip install -r requirements.txt ``` --- ### **步骤 3:解决 models 包安装问题(如需强制安装)** 如果明确需要安装 `models` 包,尝试以下方法: #### **方法 1:手动修复安装脚本** 1. 下载源码包: ```bash wget https://pypi.tuna.tsinghua.edu.cn/packages/92/3c/ac1ddde60c02b5a46993bd3c6f4c66a9dbc100059da8333178ce17a22db5/models-0.9.3.tar.gz tar -zxvf models-0.9.3.tar.gz cd models-0.9.3 ``` 2. 修改 `models/__init__.py`: ```python # 将 from base import * 改为: from .base import * ``` 3. 重新安装: ```bash python setup.py install ``` #### **方法 2:使用替代包** 尝试安装其他同名但维护更好的包: ```bash pip install tf-models-official # 例如 TensorFlow 官方模型库 ``` --- ### **步骤 4:检查 Python 环境** 确认当前虚拟环境 `toolkit2_1.6` 是否与项目兼容: ```bash python --version # 推荐 Python 3.6~3.8 pip list | grep models # 检查是否存在冲突包 ``` --- ### **总结** 1. **优先检查项目文档**:YOLOv5 Face 通常不需要单独安装 `models`。 2. **修复安装脚本**(仅限高级用户)。 3. **使用替代包或更新项目依赖**。 如问题仍未解决,请提供更多项目上下文信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值