题意
对序列 { a n } \{a_n\} {an},令 b i b_i bi 为 a i , a i + 1 , a i + 2 a_i,a_{i+1},a_{i+2} ai,ai+1,ai+2的中位数.
给 b b b,求 a a a.
子任务一 ( 30 p t s ) (30pts) (30pts), T = 10 , 3 ≤ n ≤ 10 , 0 ≤ b i ≤ 1 0 9 T=10, 3\le n\le 10, 0\le b_i\le 10^9 T=10,3≤n≤10,0≤bi≤109.
子任务三 ( 30 p t s ) (30pts) (30pts), T = 10 , 3 ≤ n ≤ 50 , 0 ≤ b i ≤ 50 T=10, 3\le n\le 50, 0\le b_i\le 50 T=10,3≤n≤50,0≤bi≤50.
子任务三 ( 40 p t s ) (40pts) (40pts), 3 ≤ n ≤ 1 0 5 , 0 ≤ b i ≤ 1 0 9 , ∑ n ≤ 1 0 6 3\le n\le 10^5, 0\le b_i\le 10^9, \sum{n}\le 10^6 3≤n≤105,0≤bi≤109,∑n≤106.
题解
有一个奇怪的猜想是a中的每个数是b中相邻若干数之一,画个图发现只会是相邻三个b中的一个,于是DP即可。