#4530. Median

题意

对序列 { a n } \{a_n\} {an},令 b i b_i bi a i , a i + 1 , a i + 2 a_i,a_{i+1},a_{i+2} ai,ai+1,ai+2的中位数.

b b b,求 a a a.

子任务一 ( 30 p t s ) (30pts) (30pts) T = 10 , 3 ≤ n ≤ 10 , 0 ≤ b i ≤ 1 0 9 T=10, 3\le n\le 10, 0\le b_i\le 10^9 T=10,3n10,0bi109.

子任务三 ( 30 p t s ) (30pts) (30pts) T = 10 , 3 ≤ n ≤ 50 , 0 ≤ b i ≤ 50 T=10, 3\le n\le 50, 0\le b_i\le 50 T=10,3n50,0bi50.

子任务三 ( 40 p t s ) (40pts) (40pts) 3 ≤ n ≤ 1 0 5 , 0 ≤ b i ≤ 1 0 9 , ∑ n ≤ 1 0 6 3\le n\le 10^5, 0\le b_i\le 10^9, \sum{n}\le 10^6 3n105,0bi109,n106.

题解

有一个奇怪的猜想是a中的每个数是b中相邻若干数之一,画个图发现只会是相邻三个b中的一个,于是DP即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值