CF981F Round Marriage

题目链接

题解

前置知识(Hall定理):
设二分图两边的为 x , y ( x ≤ y ) x,y(x\le y) x,y(xy) 一个二分图的最大匹配为:点数- m a x ( ∣ S ∣ − ∣ T ∣ ) max (|S|-|T|) max(ST)其中S为x的任意子集,T为S连向的点集。
于是这题先二分答案x,然后判定在每个A点可以向周围x的距离的B点连边时,最大匹配是否为n。运用Hall定理,结合画图发现就是每一个连续的区间对应连边的集合不小于自己,列出式子记一下前缀最大值即可判断。注意是环上,所以A要复制一遍,B也跟随复制一遍,并且在头尾再复制一遍。
代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+5;
int n,m,k; ll a[N],b[N];
int cnt(ll x){
	return upper_bound(b+1,b+k+1,x)-b-1;
}
bool chk(ll d){
	//cout<<"d="<<d<<endl;
	int mx=-N;
	for(int i=1;i<=n;i++){
		int x=cnt(a[i]+d)-i;
		mx=max(mx,cnt(a[i]-d-1)-i);
		//cout<<i<<" "<<x<<" "<<mx<<endl;
		if(x<=mx) return 0;
	}
	return 1;
}
int main()
{
	srand(time(0));
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	cin>>n>>m;
	for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
	sort(a+1,a+n+1);
	for(int i=n+1;i<=n+n;i++) a[i]=a[i-n]+m;
	for(int i=1;i<=n;i++) scanf("%I64d",&b[i+n]);
	sort(b+n+1,b+n+n+1);
	for(int i=1;i<=n;i++) b[i]=b[i+n]-m;
	for(int i=n*2+1;i<=n*3;i++) b[i]=b[i-n]+m;
	for(int i=n*3+1;i<=n*4;i++) b[i]=b[i-n]+m;
	n<<=1; k=(n<<1);
	int l=0,r=m/2;
	while(l<r){
		int mid=(l+r)>>1;
		if(chk(mid)) r=mid;
		else l=mid+1;
	}
	cout<<l<<endl;
	return 0;
}
/*
10 100
98 61 9 46 52 8 82 32 14 23
27 18 46 51 74 98 61 84 22 73
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>