题解
前置知识(Hall定理):
设二分图两边的为
x
,
y
(
x
≤
y
)
x,y(x\le y)
x,y(x≤y) 一个二分图的最大匹配为:点数-
m
a
x
(
∣
S
∣
−
∣
T
∣
)
max (|S|-|T|)
max(∣S∣−∣T∣)其中S为x的任意子集,T为S连向的点集。
于是这题先二分答案x,然后判定在每个A点可以向周围x的距离的B点连边时,最大匹配是否为n。运用Hall定理,结合画图发现就是每一个连续的区间对应连边的集合不小于自己,列出式子记一下前缀最大值即可判断。注意是环上,所以A要复制一遍,B也跟随复制一遍,并且在头尾再复制一遍。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+5;
int n,m,k; ll a[N],b[N];
int cnt(ll x){
return upper_bound(b+1,b+k+1,x)-b-1;
}
bool chk(ll d){
//cout<<"d="<<d<<endl;
int mx=-N;
for(int i=1;i<=n;i++){
int x=cnt(a[i]+d)-i;
mx=max(mx,cnt(a[i]-d-1)-i);
//cout<<i<<" "<<x<<" "<<mx<<endl;
if(x<=mx) return 0;
}
return 1;
}
int main()
{
srand(time(0));
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
cin>>n>>m;
for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
sort(a+1,a+n+1);
for(int i=n+1;i<=n+n;i++) a[i]=a[i-n]+m;
for(int i=1;i<=n;i++) scanf("%I64d",&b[i+n]);
sort(b+n+1,b+n+n+1);
for(int i=1;i<=n;i++) b[i]=b[i+n]-m;
for(int i=n*2+1;i<=n*3;i++) b[i]=b[i-n]+m;
for(int i=n*3+1;i<=n*4;i++) b[i]=b[i-n]+m;
n<<=1; k=(n<<1);
int l=0,r=m/2;
while(l<r){
int mid=(l+r)>>1;
if(chk(mid)) r=mid;
else l=mid+1;
}
cout<<l<<endl;
return 0;
}
/*
10 100
98 61 9 46 52 8 82 32 14 23
27 18 46 51 74 98 61 84 22 73
*/