时间限制: 1 Sec 内存限制: 512 MB
提交: 56 解决: 17
[提交][状态][博客][加入收藏]
题目描述
有一个n面的骰子,第i面的数是vi,朝上的概率是pi。
教室的最后一排有一个人,不停地抛这个骰子,直到某一面朝上了两次,就停止抛骰子,但他不知道所有朝上的面的数字的和的期望E是多少。
老班一脸嘲讽:“这不是超简单嘛。”
输入
输入的第一行包含一个正整数n。
输入的第二行包含n个正整数,表示vi。
输入的第三行包含n个非负整数,表示模998244353意义下的pi,保证所有pi的和为1。
n,vi,pi的含义见问题描述。
输出
输出一行一个非负整数E表示模998244353意义下的E。
样例输入
【样例输入】
2
1 2
332748118 665496236
样例输出
【样例输出】
961272344
数据范围:n<=500
来源
noip2017模拟-wmd
题解:
考虑暴力,枚举每一次骰子向上的面,直接统计。
因为向上两次的面比较特殊,故考虑枚举这个向上两次的面,我们关心的是每一个面是否已有向上过,若要记录下这样的状态则是指数级别效率,故考虑只记录下前i个面已有向上过的个数。记f[i][j]为在前i个面中选j个的期望,则记录下相同条件下的概率,两者一起转移(即枚举当前的面选或不选)。但这是n^3的,故考虑优化,发现每去掉一个面,可由f[n]变形求得f[n-1](将最后一个面当做这个面即可),故优化为n平方。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
const int N=502; const ll P=998244353;
int n; ll v[N],p[N],g[N][N],f[N][N],ans;
int main()
{
cin>>n; for(int i=1;i<=n;i++) scanf("%lld",&v[i]); for(int i=1;i<=n;i++) scanf("%lld",&p[i]);
for(int i=0;i<=n;i++) g[i][0]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
f[i][j]=(f[i-1][j]+f[i-1][j-1]*p[i]%P*j%P+g[i-1][j-1]*v[i]%P*p[i]%P*j%P)%P;
g[i][j]=(g[i-1][j]+g[i-1][j-1]*p[i]%P*j%P)%P;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
f[n-1][j]=(f[n][j]-f[n-1][j-1]*p[i]%P*j%P-g[n-1][j-1]*v[i]%P*p[i]%P*j%P+P*2)%P;
g[n-1][j]=(g[n][j]-g[n-1][j-1]*p[i]%P*j%P+P)%P;
}
for(int j=0;j<n;j++){
ans=(ans+f[n-1][j]*p[i]%P*p[i]%P*(j+1)%P+g[n-1][j]*p[i]%P*p[i]%P*(j+1)%P*v[i]*2%P)%P;
}
}
cout<<(ans%P+P)%P<<endl;
return 0;
}