整数和有理数

在之前对自然数的讨论中,我们已经得到了自然数系中的许多基本运算性质,但是这些性质只局限于加法和乘法运算。本章我们将引入这两个运算的逆运算,即减法和除法,并借此构建整数系 \(\mathbb Z\) 和有理数系 \(\mathbb Q\)

4.1 整数

  • 定义 4.1.1.1(整数):对于任意自然数 \(a\)\(b\),都存在一个整数 \(a\ominus b\)(注意中间不是减号,这只是一个形式记号)。

    定义两个整数 \(a\ominus b\)\(c\ominus d\) 相等,当且仅当 \(a+d=b+c\)

    全体整数的集合记作 \(\mathbb Z\)

整数的定义并不需要公理,因为我们可以用集合论的语言来构造整数:我们先对自然数的序偶建立一个等价关系 \(\sim\),使得 \((a,b)\sim(c,d)\iff a+d=b+c\),然后令整数 \(a \ominus b:=\{(c,d)\in\mathbb N\times \mathbb N:(a,b)\sim(c,d)\}\),表示一个关于 \(\sim\) 的等价类。那么此时两个整数相等即为二者是同一个等价类。然后我们再利用替换公理构造出集合 \(\mathbb Z:=\{a\ominus b:(a,b)\in \mathbb N\times \mathbb N\}\)。形象的说,所谓整数,就是可以写成两个自然数的形式差的数。

  • 命题 4.1.1.1(整数的相等关系是等价关系):整数相等满足自反性、对称性和传递性。

  • 定义 4.1.2.1(整数的加法):定义两个整数的和为 \((a\ominus b)+(c\ominus d):=(a+c)\ominus (b+d)\)

  • 定义 4.1.2.2(整数的乘法) :定义两个整数的积为 \((a\ominus b)\times (c\ominus d):=(ac+bd)\ominus(ad+bc)\)

可以证明,整数关于加法和乘法遵从代入公理。

容易发现,整数 \(n\ominus0\) 的代数系统与自然数 \(n\) 的代数系统之间是同构的,于是可以把 \(n\)\(n\ominus 0\) 等同起来:\(n\equiv n\ominus 0\)(即把 \(n\)\(n\ominus0\) 看成同一物)。此恒等关系保证了自然数的运算和整数的运算是相容的,于是,我们把自然数嵌入到了整数系当中。

  • 定义 4.1.3(整数的负运算):定义整数 \(a\ominus b\) 的负数为整数 \(b\ominus a\),记作 \(-(a\ominus b)\)。那么自然数 \(n\) 的负数为 \(-n:=0\ominus n\)

    容易证明,整数关于负运算遵从代入公理。

  • 引理 4.1.4(整数的三歧性):设 \(x\) 是一个整数,那么下述三个命题恰有一个成立:

    • \(x\) 等于 \(0\ominus 0\),即自然数 \(0\)
    • \(x\) 等于 \(n\ominus 0\)(其中 \(n\) 是一个正自然数),即正自然数 \(n\)
    • \(x\) 等于 \(0\ominus n\)(其中 \(n\) 是一个正自然数),即正自然数的负数 \(-n\)

    证明:先证上述三个命题中至少有一个成立:根据定义,存在两个自然数 \(a,b\) 使得 \(x=a\ominus b\)。若 \(a=b\),那么 \(a\ominus b=0\ominus 0\);若 \(a>b\),那么存在正自然数 \(n\) 使得 \(a=b+n\),那么 \(a\ominus b=n\ominus 0\);若 \(a<b\),那么存在正自然数 \(n\) 使得 \(b=a+n\),那么 \(a\ominus b=0\ominus n\)

    再证上述三个命题中不可能有两个同时成立:利用等于的传递性,即证 \(0 \ominus 0\)\(n\ominus 0\)\(0\ominus m\)(其中 \(n,m\) 为任意正自然数)两两不等,反证易证。

对于正自然数 \(n\),我们称 \(-n\) 为负整数。于是每个整数恰好是零、正的、负的中的一种。

  • 引理 4.1.5:设 \(x,y\) 为整数,那么 \(xy\) 为正的当且仅当 \(x,y\) 同为正的或 \(x,y\) 同为负的,\(xy\) 为负的,当且即当 \(x,y\) 一正一负。

    证明:后推前可以根据需要把 \(x,y\) 都表示成 \(n-0\)\(0-n\)(其中 \(n\) 为整数)的形式,前推后可以利用整数的三歧性(即除了这种情况外,其他情况都会推出 \(xy\) 不满足三歧性)。

我们现在总结一下整数的代数性质。

  • 命题 4.1.6(整数构成交换环)

    \(x,y,z\) 是整数,那么

    1. 加法交换律\(x+y=y+x\)
    2. 加法结合律\((x+y)+z=x+(y+z)\)
    3. 加法单位元\(x+0=x\)
    4. 加法逆元\(x+(-x)=0\)
    5. 乘法交换律\(xy=yx\)
    6. 乘法结合律\((xy)z=x(yz)\)
    7. 乘法单位元\(x1=x\)
    8. 分配律\(x(y+z)=xy+xz\)

    证明:把整数都表示成 \(a\ominus b\) 的形式,注意 \(a\)\(b\) 此时是自然数,那么再运用自然数的性质即可。

满足上述恒等式的集合有一个名称,它们确定整数集 \(\mathbb Z\) 构成一个交换环(如果去掉恒等式 \(xy=yx\) 并补上 \(1x=x\) 及右分配律,那么仅能够确定 \(\mathbb Z\) 构成一个环。如果你对相关知识感兴趣,可以参考一本抽象代数书籍)。

至此,我们成功定义了整数并得到了一些关于整数的基本性质。

另一种定义整数的想法是:先定义正自然数的负数,然后再定义整数就是零、正自然数或正自然数的负数中的一种。但按这种定义方法,在定义整数的加法和乘法时,就要分成很多种情形来定义(在定义负数加正数时甚至还要比较大小),而验证一些整数的代数性质时只会带来更大的混乱,所以我们并不这么做,而是依赖了一个沟通自然数的记号来定义整数。

现在让我们来定义减法:

  • 定义 4.1.7(减法):定义两个整数 \(x\)\(y\) 的减法操作:\(x-y:=x+(-y)\)

那么可以容易地验证,若 \(x\)\(y\) 是自然数,那么 \(x-y=x\ominus y\),于是我们现在用减法符号代替 \(\ominus\) 了。

既然减法是通过加法和负运算定义的,那么整数关于减法自然就遵从代入公理,它的一个直接推论是对于整数 \(a,b,c\)\(a=b\iff a-c=b-c\)

除了命题 4.1.5 所述的之外,我们现在再将一些自然数的定义和性质推广到整数上:

  • 命题 4.1.8(乘法的非退化性):设 \(a\)\(b\) 是整数,那么 \(ab=0\iff (a=0\lor b=0)\)

    证明:只证 \(ab=0\implies (a=0\lor b=0)\)。首先有引理 \(-n=(-1)\times n\)。然后反证,分 \(a,b\) 的正负性讨论,然后用回当 \(a\)\(b\) 是正自然数时 \(ab\neq 0\)

  • 推论 4.1.9(乘法消去律):设 \(a,b,c\) 是整数,若满足 \(ac=bc\)\(c\neq 0\),则 \(a=b\)

    证明:设 \(a=b+d\),得到 \(d=0\)

有了减法和整数的三歧性,我们更容易整数的序,而不必像定义自然数的序那样。

  • 定义 4.1.10(整数的序):设 \(x\)\(y\) 是整数。称 \(x>y\) 当且仅当 \(x-y\) 是正整数。称 \(x<y\) 当且仅当 \(x-y\) 是负整数。称 \(x\geq y\) 当且仅当 \(x>y\)\(x=y\)。称 \(x\leq y\) 当且仅当 \(x<y\)\(x= y\)

  • 命题 4.1.11(有理数的序的基本性质):设 \(x,y,z\) 为整数。

    • 反对称性\(x<y\iff y>x\)
    • 传递性\((x<y\land y<z)\implies x<z\)
    • 三歧性\(x<y,x=y,x>y\) 中恰有一个是真的;
    • 加法保序\(x<y\implies x+z<y+z\)
    • 正乘法保序\((x<y\land z>0)\implies xz<yz\)
    • 负乘法反序\((x<y\land z<0)\implies xz>yz\)

4.2 有理数

有理数的定义方式和整数的定义方式十分相似(形象的说,有理数是整数的形式商),所以一些类似的证明我们将会直接略去。

  • 定义 4.2.1(有理数):对于任意整数 \(a\)\(b\neq 0\),都存在一个有理数 \(a\oslash b\)

    定义两个有理数 \(a\oslash b\)\(c\oslash d\) 是相等的,当且仅当 \(ad=bc\)。可以证明该定义满足自反性、对称性和传递性。

    全体有理数的集合记作 \(\mathbb Q\)

  • 定义 4.2.2(有理数的运算):定义两个有理数的和为 \((a\oslash b)+(c\oslash d):=(ad+bc)\oslash (bd)\)

    定义两个有理数的积为 \((a\oslash b)\times (c\oslash d):=(ac)\oslash (bd)\)

    定义一个有理数的负运算为 \(-(a\oslash b):=(-a)\oslash b\)

    可以证明,上述运算定义合法,且有理数关于上述运算遵从代入公理。

容易发现,有理数 \(a\oslash 1\) 的代数系统与整数 \(a\) 的代数系统之间是同构的,于是可以把 \(a\)\(a\oslash 1\) 等同起来:\(a\equiv a\oslash 1\)。此恒等关系保证了整数的运算和有理数的运算是相容的,于是,我们把整数嵌入到了有理数系当中。

  • 引理 4.2.3(除法的非退化性):一个有理数 \(a\oslash b\) 等于 \(0\) 当且仅当 \(a=0\)

    证明:根据定义可得。

  • 定义 4.2.4(有理数的倒数运算):定义非零有理数 \(x=a\oslash b\) 的倒数为有理数 \(b\oslash a\),记作 \(x^{-1}\)

    容易证明,有理数关于倒数运算遵从代入公理。

我们现在总结一下有理数的代数性质。

  • 命题 4.2.5(有理数的代数算律)

    \(x,y,z\) 是有理数,那么

    1. 加法交换律\(x+y=y+x\)
    2. 加法结合律\((x+y)+z=x+(y+z)\)
    3. 加法单位元\(x+0=x\)
    4. 加法逆元\(x+(-x)=0\)
    5. 乘法交换律\(xy=yx\)
    6. 乘法结合律\((xy)z=x(yz)\)
    7. 乘法单位元\(x1=x\)
    8. 分配律\(x(y+z)=xy+xz\)
    9. 乘法逆元:如果 \(x\) 非零,我们有 \(xx^{-1}=1\)

    证明:把有理数都表示成 \(a\oslash b\) 的形式,再运用整数的性质代入验证即可。

上述恒等式的集合有一个名称,它们确定有理数集 \(\mathbb Q\) 构成一个(同样为抽象代数名词)。

现在让我们来定义除法:

  • 定义 4.2.6(除法):定义两个有理数 \(x\)\(y\neq 0\) 的减法操作:\(x/y:=x\times y^{-1}\)\(x/y\) 也记作 \(\frac{x}{y}\)

那么可以容易地验证,若 \(x\)\(y\) 是整数,那么 \(x/y=x\oslash y\),于是我们现在用 \(x/y\) 代替 \(x\oslash y\) 了。

有理数关于除法遵从代入公理,它的一个直接推论是对于有理数 \(a,b,c\),其中 \(c\) 非零,\(a=b\iff a/c=b/c\)

  • 定义 4.2.7(正有理数和负有理数):一个有理数 \(x\) 叫作是正的,当且仅当存在两个正整数 \(a\)\(b\) 满足 \(x=\frac{a}{b}\)。一个有理数 \(x\) 叫作是负的,当且仅当存在两个正整数 \(a\)\(b\) 满足 \(x=\frac{-a}{b}\)

  • 引理 4.2.8(有理数的三歧性):设 \(x\) 是有理数,那么三个命题 “\(x\) 等于 \(0\)”、“\(x\) 是正的有理数” 和 “\(x\) 是负的有理数” 中恰有一个成立。

    证明:设 \(x=a/b\),其中 \(b\) 是非零整数。若 \(b\) 是负整数,那么 \(x=(-a)/(-b)\),于是我们不妨规定 \(b\) 是正的。此时根据 \(a\) 讨论即可知三个命题中至少有一个成立。

    对于正整数 \(a,b,c,d\),若 \(a/b=(-c)/d\),那么可推得正整数等于负整数,矛盾。同理可推得三个命题中至多一个成立。

  • 引理 4.2.9(积的符号):设 \(x,y\) 为有理数,那么 \(xy\) 为正的当且仅当 \(x,y\) 同为正的或 \(x,y\) 同为负的,\(xy\) 为负的,当且仅当 \(x,y\) 一正一负。

  • 定义 4.2.10(有理数的序):设 \(x\)\(y\) 是有理数。称 \(x>y\) 当且仅当 \(x-y\) 是正有理数。称 \(x<y\) 当且仅当 \(x-y\) 是负有理数。称 \(x\geq y\) 当且仅当 \(x>y\)\(x=y\)。称 \(x\leq y\) 当且仅当 \(x<y\)\(x=y\)

  • 命题 4.2.11(有理数的序的基本性质):设 \(x,y,z\) 为有理数。

    • 反对称性\(x<y\iff y>x\)
    • 传递性\((x<y\land y<z)\implies x<z\)
    • 三歧性\(x<y,x=y,x>y\) 中恰有一个是真的;
    • 加法保序\(x<y\implies x+z<y+z\)
    • 正乘法保序\((x<y\land z>0)\implies xz<yz\)
    • 负乘法反序\((x<y\land z<0)\implies xz>yz\)

4.3 绝对值与接近性

  • 定义 4.3.1(绝对值):根据有理数的三歧性,定义有理数 \(x\) 的绝对值 \(|x|\) 为:若 \(x\) 是正的,那么 \(|x|:=x\);若 \(x\) 是负的,那么 \(|x|:=-x\);若 \(x\)\(0\),那么 \(|x|:=0\)

  • 定义 4.3.2(距离):定义两个有理数 \(x\)\(y\) 的距离为 \(|x-y|\),记作 \(d(x,y)\)

  • 命题 4.3.3(绝对值及距离的基本性质):设 \(x,y,z\) 为有理数。

    1. 绝对值的非退化性\(|x|\geq 0\),当且仅当 \(x=0\) 时取等。特别地,\(d(x,y)\geq 0\),当且仅当 \(x=y\) 时取等;
    2. 距离的对称性\(d(x,y)=d(y,x)\)
    3. 绝对值的限定范围\(|x|\leq y\iff -y\leq x\leq y\)
    4. 绝对值的可乘性\(|xy|=|x||y|\)。特别地,\(|-x|=|x|\)\(d(x,y)=d(y,x)\)
    5. 三角不等式\(|x+y|\leq |x|+|y|\),当且仅当 \(xy\geq 0\) 时等号成立。特别地,\(d(x,y)\leq d(x,z)+d(z,y)\),当且仅当 \(x\leq z\leq y\)\(y\leq z\leq x\) 时等号成立。

    证明:分类讨论即可。

  • 定义 4.3.4(\(\varepsilon\overline{\ }\) 接近性) :设 \(x,y,\varepsilon\) 为有理数且 \(\varepsilon>0\),我们称,\(y\)\(\varepsilon\overline{\ }\) 接近于 \(x\) 的(记作 \(x\overset{\varepsilon}{\approx} y\)),当且仅当 \(d(x,y)\leq \varepsilon\)

\(\varepsilon\overline{\ }\) 接近性的定义是在给极限的定义做铺垫。我们将给出关于 \(\varepsilon\overline{\ }\) 接近性的一些基本性质。

  • 命题 4.3.5(\(\varepsilon\overline{\ }\) 接近性的性质):设 \(x,y,z,w,\varepsilon,\delta\) 为有理数,且 \(\varepsilon,\delta>0\)

    1. \(x=y\iff \forall_{\varepsilon>0},x\overset{\varepsilon}{\approx}y\)

    2. \(x\overset{\varepsilon}{\approx}y\iff y\overset{\varepsilon}{\approx} x\)

    3. \((x\overset{\varepsilon}{\approx}y\land y\overset{\delta}{\approx}z)\implies x\overset{\varepsilon+\delta}{\approx}z\)。证明:\(d(x,z)\leq d(x,y)+d(y,z)\leq \varepsilon+\delta\)

    4. \(x\overset{\varepsilon}{\approx} y\implies x+z\overset{\varepsilon}{\approx} y+z\)

    5. \((x\overset{\varepsilon}{\approx}y\land z\overset{\delta}{\approx}w)\implies x+z\overset{\varepsilon+\delta}{\approx}y+w\)

      证明\(|(y+w)-(x+z)|=|(y-x)+(w-z)|\leq |y-x|+|w-z|\leq \varepsilon+\delta\)

    6. \(\varepsilon'\) 是有理数且 \(\varepsilon'>\varepsilon\),则 \(x \overset{\varepsilon}{\approx}y\implies x\overset{\varepsilon'}{\approx}y\)

    7. \(x \overset{\varepsilon}{\approx} y\),且 \(x\leq z\leq y\lor y\leq z\leq x\),则 \(x\overset{\varepsilon}{\approx} z\)

      证明\(d(x,z)+d(z,y)=d(x,y)\implies d(x,z)\leq d(x,y)\leq \varepsilon\)

    8. \((x\overset{\varepsilon}{\approx} y\land z\neq 0)\implies xz\overset{\varepsilon|z|}{\approx}yz\)

      证明\(|xz-yz|=|(x-y)z|=|x-y||z|\leq\varepsilon|z|\)

    9. \((x\overset{\varepsilon}{\approx} y\land z\overset{\delta}{\approx}w)\implies xz\overset{\varepsilon|z|+\delta|x|+\varepsilon\delta}{\approx}yw\)

      证明:设 \(y=x+a\)\(w=z+b\),则 \(|a|\leq \varepsilon\)\(|b|\leq \delta\)

      那么 \(|xz-yw|=|xz-(x+a)(z+b)|=|az+bx+ab|\leq |az|+|bx|+|ab|\leq \varepsilon|z|+\delta|x|+\varepsilon\delta\)

可以发现,命题 4.3.5 的前三条和自反性、对称性、传递性这些相等的公理很像,说明 \(\varepsilon\overline{\ }\) 接近的概念和相等的概念是相似的,这也是我采用符号 \(\overset{\varepsilon}{\approx}\) 的原因。

4.4 有理数的整数幂

现在我们来定义整数次幂的指数运算。

  • 定义 4.4.1(自然数次幂的指数运算):设 \(x\) 是有理数,首先定义 \(x^0:=1\)。现归纳地假定已定义好 \(x^n\),那么定义 \(x^{n+1}:=x^n\times x\)

  • 命题 4.4.2(自然数指数运算律):设 \(x,y\) 是有理数,\(n,m\) 是自然数。

    1. \(x^nx^m=x^{n+m}\)\((x^n)^m=x^{nm}\)\((xy)^n=x^ny^n\)
    2. \(n>0\)\(x^n=0\iff x=0\)
    3. \((x>y\geq 0\land n>0)\implies x^n>y^n\geq 0\)
    4. \(|x^n|=|x|^n\)

    证明:归纳。

  • 定义 4.4.3(负数次幂的指数运算):设 \(x\) 是一个非零的有理数,那么对于任何负整数 \(-n\),定义 \(x^{-n}:=\frac{1}{x^n}\)

  • 引理 4.4.4(指数拆分):设 \(x\) 是一个非零的有理数,\(n\) 是整数,那么 \(x^{n+1}=x^{n}\times x\)

    证明:若 \(n\) 是自然数,则根据定义 4.3.6 可知命题成立。若 \(n\) 是负整数,设 \(n=-m\)(则 \(m\) 为正数),那么 \(x^n\times x=\frac{1}{x^m}\times x=\frac{1}{x^m/x}\),根据定义 4.3.6 可知 \(x^m/x=x^{m-1}\),故 \(x^n\times x=\frac{1}{x^{m-1}}\),再分 \(m-1\) 是零还是负数讨论即可。

  • 引理 4.4.5(指数消去率):设 \(x\) 是一个非零的有理数,\(n,m\) 是自然数,那么 \(x^{n-m}=\frac{x^n}{x^m}\)

    证明:对 \(n\) 归纳,利用引理 4.3.9。

  • 命题 4.4.6(整数指数运算律):设 \(x,y\) 是非零的有理数,\(n,m\) 是整数。

    1. \(x^nx^m=x^{n+m}\)\((x^n)^m=x^{nm}\)\((xy)^n=x^ny^n\)
    2. \((x>y\geq 0\land n>0)\implies (x^n>y^n\geq 0)\)\((x>y\geq 0\land n<0)\implies (y^n>x^n\geq 0)\)
    3. \(x,y>0\)\(n\neq 0\),那么 \(x^n=y^n\implies x=y\)
    4. \(|x^n|=|x|^n\)

    证明:先利用整数的定义和引理 4.3.10 将 \(x^n\) 表示成 \(x^{a-b}=\frac{x^a}{x^b}\) 的形式(其中 \(a,b\) 均为自然数),再证明即可。

4.5 有理数中的空隙

  • 命题 4.5.1:设 \(x\) 是有理数。那么存在唯一的一个整数 \(n\),使得 \(n\leq x<n+1\),记 \(n\)\(x\) 的整部 \(n=[x]\)

    证明:存在性:先分 \(x\) 是否非负讨论,再把 \(x\) 表示成分数形式,然后再利用欧几里得算法(命题 2.3.8)容易构造一组解。唯一性:反证。

  • 命题 4.5.2:设 \(x\)\(y\) 是有理数且 \(x<y\),那么存在有理数 \(z\) 满足 \(x<z<y\)

    证明:令 \(z:=\frac{x+y}{2}\)

根据 4.5.2,我们可以知道有理数是十分 “稠密” 的,但有理数之间还是存在无限多个 “空隙”,尽管这种稠密性保证了每个空隙是无限小的(即这些空隙不会是 “连续的一段”)。例如,我们可以证明有理数中不存在 \(2\) 的平方根:

  • 引理 4.5.3:不存在一个自然数序列 \(a_0,a_1,\cdots\),使得对于任意自然数 \(n\)\(a_n>a_{n+1}\)

    证明:假设存在。可以归纳证明,对于任意自然数 \(n\)\(a_n\leq a_0-n\)。那么考虑 \(a_{a_0+1}\leq a_0-(a_0+1)<0\),矛盾。

  • 命题 4.5.4:不存在有理数 \(x\) 使得 \(x^2=2\)

    证明:显然 \(x\neq 0\)。又由于 \((-x)^2=x^2\),所以不妨设 \(x\) 是正的,那么存在正整数 \(p,q\) 使得 \(x=\frac{p}{q}\)。根据 \(x^2=2\),可得 \(p^2=2q^2\)

    我们还没有定义奇数和偶数的概念,不过我们可以暂且使用:\(p^2=2q^2\) 可知 \(p^2\) 是偶数,即 \(p\) 是偶数。不妨设 \(p=2k\),其中 \(k\) 应是一个小于 \(p\) 的正数。那么存在 \((2k)^2=2q^2\)\(q^2=2k^2\)。我们每次从 \((p,q)\) 递归到 \((q,k)\),而括号内的两数中至少一个变小。也就是说,我们能无限地让括号内的两数 \(a,b\) 变小下去(准确地说是轮流除 \(2\)),并说它们一直是正数,根据引理 4.4.3,这显然是不可能的。

另一方面,我们可以得到任意接近 \(2\) 的平方根的有理数:

  • 命题 4.5.5:对于每个有理数 \(\varepsilon>0\),都存在一个非负的有理数 \(x\),使得 \(x^2<2<(x+\varepsilon)^2\)

    证明:首先需注意不存在有理数的平方等于 \(2\)。我们考虑找到自然数 \(n\) 使得 \((n\varepsilon)^2<2<((n+1)\varepsilon)^2\)。假设不存在,那么可以归纳证明对于任意自然数 \(n\)\((n\varepsilon)^2<2\)。但考虑取 \(n=[\frac{2}{\varepsilon}]+1\),那么 \(n>\frac{2}{\varepsilon}\implies(n\varepsilon)^2>4>2\),矛盾。

我们对整数与有理数的讨论至此基本完结。基于上述理论, 我们接下来就可以(也有必要)引入实数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值