组合杂题选讲 #4

问题描述

题意:已知有一个 \(n\) 点的无向图 \(G\) 不包含三元环,求 \(G\) 边数的最大值。

提示:设 \(G=(V,E)\) 是一个无向图。我们称 \(G\) 包含三元环是指存在三个点 \(a,b,c\) 满足 \(\{(a,b),(b,c),(a,c)\}\subseteq E\)

例如当 \(n=5\) 时,下面是一个不包含三元环的图的例子,

包含 5 个点 6 条边的样例图

该图包含 \(5\) 个点和 \(6\) 条边,可以证明所有没有三元环的 \(5\) 个点的无向图的边数均不超过 \(6\)

解答

\(G=(V,E)\) 是某个无向图,包含 \(n\) 个点 \(m\) 条边。点 \(v\) 的度数是指连接点 \(v\) 的边的数量,记作 \(\mathrm d(v)\)。于是有

\[\sum_{x\in V}\mathrm d(x)=2m \]

以及

\[\begin{aligned}\sum_{x\in V}\mathrm d^2(x)&=\sum_{x\in V}\sum_{(x,y)\in E}\mathrm d(x)\\&=\sum_{(x,y)\in E}\mathrm d(x)+\mathrm d(y)\end{aligned} \]

现在假设 \(G\) 不包含三元环。若 \((x,y)\) 是图 \(G\) 的边,那么对于任意一个点 \(v\),一定有 \((x,v)\not\in E\)\((y,v)\not\in E\),这说明

\[\mathrm d(x)+\mathrm d(y)\leq n \]

于是

\[\sum_{(x,y)\in E}\mathrm d(x)+\mathrm d(y)\leq nm \]

另一方面,根据柯西-施瓦茨不等式得到

\[\sum_{x\in V}\mathrm d^2(x)\geq\frac 1n\left(\sum_{x\in V}\mathrm d(x)\right)^2=\frac{4m^2}{n} \]

联立上述结果,得到

\[nm\geq \sum_{(x,y)\in E}\mathrm d(x)+\mathrm d(y)=\sum_{x\in V}\mathrm d^2(x)\geq\frac{4m^2}{n} \]

整理得到 \(m\leq n^2/4\),这说明 \(m\) 的值不会超过 \(\lfloor n^2/4\rfloor\),这个上界可以由完全二分图 \(\mathrm K(\lfloor n/2\rfloor,\lceil n/2\rceil)\) 取到。

2022年12月16日 与东莞松山湖

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值