杂谈:二项式反演与多步容斥

这是两个本质不同的东西。

多步容斥是“至少或至多选若干个”到“恰好选若干个”的变换。而二项式反演是“钦定选若干个”到“恰好选若干个”的变换。二项式反演虽然形式上和多步容斥极为相似,但它们并不等价,只是习惯上很多人把他们都称之为多步容斥。

在二项式反演的组合意义上,记 \(f(n)\) 表示 “钦定选 \(n\) 个”,\(g(n)\) 表示 “恰好选 \(n\) 个”,则对于任意的 \(i\ge n\)\(g(i)\)\(f(n)\) 中被计算了 \(\binom in\) 次,故有

\[f(n)=\sum_{i=n}^m\binom ing(i) \]

其中 \(m\) 是数目上界。

十分值得注意的是,在定义中,\(f(n)\) 表示先钦定 \(n\) 个,再统计钦定情况如此的方案数,其中会包含重复的方案,因为一个方案可以有多种钦定情况。具体地,对于恰好选择 \(i\) 个,钦定情况数为 \(\binom in\),故 \(g(i)\)\(f(n)\) 中被计算了 \(\binom in\) 次。切勿将 \(f(n)\) 理解为普通的后缀和。

举个例子,错排数 \(D_n\) 的一个公式是

\[D_n=\sum_{k=0}^n(-1)^k\binom nk(n-k)! \]

这个公式是对的,然而从容斥的角度看毫无疑问是似是而非的。如果把 \((-1)^k\) 理解为容斥系数,这个式子的意思似乎是先选定至少 \(k\) 个位置使得 \(a_i=i\),剩下的随意排,也就是至少 \(k\) 个位置不错位的方案数,但仔细想想并不是这样的。

考虑 \(n=3,k=1\) 时公式给出方案数为 \(6\),而实际上只有下面四种方案:

\[123,132,321,213 \]

这是因为 \(123\) 被计算了 \(3\) 次,毫无疑问这里从容斥原理的角度看是算重复了。但是重二项式反演的角度看则刚刚好:设 \(f_i\) 表示恰好有 \(i\)\(a_k=k\) 的排列数,\(g_i\) 表示钦定有 \(i\)\(a_k=k\) 的排列数,那么

\[g_i=\sum_{j\geq i} \binom jif_j \]

二项式反演得到

\[f_i=\sum_{j\geq i} (-1)^{j-i} \binom jig_j \]

我们要求的就是 \(f_0\)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值