一类恒等式的应用(范德蒙德卷积与超几何函数)

本文深入探讨了超几何函数与范德蒙德卷积的关系,通过实例展示了如何利用超几何函数进行复杂求和问题的解决。文章介绍了超几何函数的定义、高斯超几何函数与范德蒙德卷积的联系,以及多个基于这些概念的恒等式和变换,如库默尔公式、迪克逊公式、范德蒙德变换和高斯恒等式。此外,文中通过实例展示了如何利用这些理论解决组合数的封闭形式问题。
摘要由CSDN通过智能技术生成

你可以在这里找到一个PDF版本


翻到了2年前的一篇日报,一类恒等式的应用 -- foreverlastnig 的博客 ,里面指出了一个恒等式的应用:

\[\sum_{k=0}^n\binom{r}{k}\binom{s}{n-k}=\binom{r+s}{n} \]

这个恒等式就是大名鼎鼎的范德蒙德卷积,它最早是由中国人朱世杰于1303年发现的,法国人范德蒙德在18世纪重新发现了它。本文尝试从超几何函数的角度更进一步探究其在组合数的恒等变形中的重要意义。本文内容大部分来源于对《具体数学》第五章其中有关超几何函数的整理。

本文均只在实数范围内讨论,不考虑复数。

约定与前置知识

连续阶乘(广义阶乘函数):

最开始,大家熟知的阶乘定义是:

\[n!=\prod_{k=1}^nk \]

欧拉将其拓展到了全体实数上(也适用于部分复数,超出了本文的范围):

\[x!=\int_0^\infty t^x\mathrm{e}^{-t}\mathrm dt \]

同样满足阶乘的基本性质,即:

\[x!=x(x-1)! \]

欧拉还定义了一个相仿的函数,称为 \(\Gamma\) 函数,满足:

\[\begin{aligned}\Gamma(x+1)&=x!\\\Gamma(x+1)&=x\Gamma(x)\\(-x)!\Gamma(x)&=\frac{\pi}{\sin(\pi x)}\end{aligned} \]

通过广义阶乘,我们可以定义广义上的二项式系数(取恰当极限):

\[\binom{a}{b}=\lim_{r\to a}\lim _{s\to b}\frac{r!}{s!(r-s)!} \]

通过广义阶乘,定义下降幂和上升幂:

\[\begin{aligned}x^{\overline{n}}&=\Gamma(x+n)/\Gamma(x)\\x^{\underline{n}}&=x!/(x-n)!\end{aligned} \]

对于广义阶乘的乘法逆元,欧拉还证明了,

\[\frac{1}{x!}=\lim_{n\to\infty}\binom{n+x}{n}n^{-x} \]

由此可知,对于任何负整数 \(x\),都有

\[\frac{1}{x!}=0 \]

二项式系数:

基本的二项式恒等式应当被熟练使用,并了解多项式推理法,可以参考二项式系数 -- zhiyangfan 的小窝。下面列出一些常用的供读者快速索引,

\[\begin{aligned}\binom nk&=\binom n{n-k},n\in\mathbb N,k\in\mathbb Z\\(a+b)^r&=\sum_k\binom rka^kb^{r-k}\\\binom rk&=\frac rk\binom{r-1}{k-1},k\in\mathbb Z,k\neq0\\\binom rs&=\binom{r-1}k+\binom{r-1}{k-1},k\in\mathbb Z\\\binom rs&=(-1)^s\binom{s-1-r}s,s\in\mathbb Z\end{aligned} \]

生成函数:

基本的生成函数知识会被使用,可以参考铃悬的数学小讲堂——生成函数初步 -- 铃悬 的博客

超几何函数

化简求和式子的时候,我们通常可以将原式转化为下面形式

\[\sum_ {k\ge0}t_k \]

考虑这个求和相邻两项的比值 \(t_{k+1}/t_k\),若为一个常数 \(c\),则有

\[t_k=t_0c^k \]

运用等比数列的求和公式,

\[\begin{aligned}\sum_ {k\ge0}t_k&=\sum_ {k\ge0}t_0c^k\\&=t_0\sum_ {k\ge0}c^k\\&=\frac{t_0}{1-c}\end{aligned} \]

上面运用了几何级数的求和公式。然而大部分情况相邻两项的比值并非一个常数,举个例子,求下面式子的封闭形式,其中 \(n\ge0\)

\[A=\sum_{k=0}^{n}\binom{n}{k}^2 \]

翻转求和顺序,并重写求和范围,

\[A=\sum_{k\ge0}\binom{n}{n-k}^2 \]

\(t_k=\binom{n}{n-k}^2\),其相邻两项的比值

\[\begin{aligned}\frac{t_{k+1}}{t_k}&=\frac{\binom{n}{n-k-1}^2}{\binom{n}{n-k}^2}\\&=(\frac{n!}{(n-k-1)!(k+1)!}\bigg/\frac{n!}{(n-k)!k!})^2\\&=\frac{(k-n)^2}{(k+1)^2}\end{aligned} \]

是关于 \(k\) 的一个有理函数(两个关于 \(k\) 的多项式的商),由此考虑构造级数

\[S=\sum_{k\ge0}(\frac{(-n)^{\overline{k}}}{k!})^2 \]

其相邻两项的比值也为 \(\frac{(k-n)^2}{(k+1)^2}\)。这个级数 \(S\) 的常数项的值为 \(1\),巧的是 \(A\) 的常数项也为 \(1\),这使得我们断定这两个级数相等,即

\[A=t_0S=S \]

通过后面要讲述的方法,我们将可以轻松的求出 \(S=\binom{2n}{n}\),从而求出了 \(A\) 的封闭形式。

为了更加通用和方便地通过 \(t_ {k+1}/t_k\) 构造出形如 \(S\) 的级数,我们使用一般的超几何函数,它是关于 \(x\) 的带有 \(n+m\) 个参数的幂级数,定义为

\[\mathrm F\left(\begin{gathered}a_1,\cdots,a _m\\b_1,\cdots,b_n\end{gathered}\middle|x\right)=\sum _{k\ge0}\frac{a _1^{\overline{k}}\cdots a _m^{\overline{k}}x^k}{b _1^{\overline{k}}\cdots b _n^{\overline{k}}k!} \]

(在行内,我们则使用记号 \(\mathrm F(a_ 1,\cdots,a_ m;b _ 1,\cdots,b_ n;x)\) 表示)不难发现,超几何级数的常数项总为 \(1\),而其相邻两项的比值为

\[\begin{aligned}\frac{t_{k+1}}{t _k}&=\frac{a _1^{\overline{k+1}}\cdots a _m^{\overline{k+1}}}{b _1^{\overline{k+1}}\cdots b _n^{\overline{k+1}}}\frac{b _1^{\overline{k}}\cdots b _n^{\overline{k}}}{a _1^{\overline{k}}\cdots a _m^{\overline{k}}}\frac{k!x^{k+1}}{(k+1)!x^k}\\&=\frac{(k+a _1)\cdots(k+a _m)x}{(k+b _1)\cdots(k+b _n)(k+1)}\end{aligned} \]

这是关于 \(k\) 的一个有理函数。因此,相邻两项的比值是有理函数(且可以因式分解成上面的形式)的级数总可以写成超几何函数的形式。使得许多组合恒等式成为超几何函数的特例而已。在上面的例子里,\(S\) 其实是超几何函数的一个特殊例子,即

\[S=\mathrm F\left(\begin{gathered}-n,-n\\1\end{gathered}\middle|1\right) \]

高斯超几何函数与范德蒙德卷积

一个拥有两个上参数和一个下参数的超几何函数被称为高斯超几何函数(又称普通超几何函数),它的形式是

\[\mathrm F\left(\begin{gathered}a,b\\c\end{gathered}\middle|x\right)=\sum _{k\ge0}\frac{a^{\overline{k}}b^{\overline{k}}z^k}{c^{\overline{k}}k!} \]

高斯超几何函数取 \(x=1\) 时与范德蒙德卷积有着密切的联系。考虑范德蒙德卷积,我们知道

\[\sum_{k=0}^n\binom{r}{k}\binom{s}{n-k}=\binom{r+s}{n} \]

另一方面,

\[\text{L.H.S.}=\sum_{k\ge0}\binom{r}{k}\binom{s}{n-k} \]

其第 \(k\) 项为 \(t_k=\binom{r}{k}\binom{s}{n-k}\),相邻两项的比值

\[\begin{aligned}\frac{t_{k+1}}{t_k}&=\frac{\binom{r}{k+1}\binom{s}{n-k-1}}{\binom{r}{k}\binom{s}{n-k}}\\&=\frac{r!s!k!(r-k)!(n-k)!(s-n+k)!}{r!s!(k+1)!(r-k-1)!(n-k-1)!(s-n+k+1)!}\\&=\frac{(r-k)(n-k)}{(k+1)(s-n+k+1)}\\&=\frac{(k-r)(k-n)}{(k+s-n+1)(k+1)}\end{aligned} \]

由此可知,

\[\begin{aligned}\text{L.H.S.}&=t_0\mathrm F\left(\begin{gathered}-r,-n\\s-n+1\end{gathered}\middle|1\right)\\&=\binom{s}{n}\mathrm F\left(\begin{gathered}-r,-n\\s-n+1\end{gathered}\middle|1\right)=\text{R.H.S}\end{aligned} \]

代入范德蒙德卷积右边,并将 \(t_0\) 移项,得到

\[\begin{aligned}\mathrm F\left(\begin{gathered}-r,-n\\s-n+1\end{gathered}\middle|1\right)&=\frac{\binom{r+s}{n}}{\binom{s}{n}}\\\therefore \mathrm F\left(\begin{gathered}-r,-n\\s-n+1\end{gathered}\middle|1\right)&=\frac{(r+s)!(s-n)!}{(r+s-n)!s!}\end{aligned} \]

\(a=-r,b=-n,c=s-n+1\),整理得到

\[\mathr
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值