回溯算法总结

2016.11.5

【算法框架】

void search(int k)
{
if (满足条件)
输出解
else
{
枚举解的每一种可能性
处理数据
搜索下一层
恢复状态
}
}

【算法核心】
深度优先遍历,一直向下搜索
递归地调用函数自身

【适用问题】
找出所有可行解(深搜其实就是穷举嘛)
找出最优解(但这个最优解没有目标状态)

【优化算法】
在搜索下一层之前,先判断是否应该继续搜索下去,也就是所谓地剪枝

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
回溯算法是一种通过穷举所有可能的解来求解问题的算法。它通常用于解决组合、排列、子集和搜索等问题。在回溯算法中,我们通过递归的方式尝试所有可能的选择,并在每一步进行剪枝,以避免无效的搜索。 在给出的引用中,有三个例子展示了使用回溯算法解决不同的问题。第一个例子是找出给定数组中的所有递增子序列。通过递归和剪枝的方式,我们可以找到所有满足条件的子序列。 第二个例子是生成给定字符串中的所有字母大小写组合。通过递归和剪枝的方式,我们可以生成所有可能的组合。 第三个例子是生成有效的括号组合。通过递归和剪枝的方式,我们可以生成所有满足括号匹配规则的组合。 总的来说,回溯算法是一种非常灵活和强大的算法,可以用于解决各种组合和搜索问题。在实际应用中,我们可以根据具体问题的特点来设计回溯算法的实现。 #### 引用[.reference_title] - *1* [python 回溯算法总结](https://blog.csdn.net/weixin_45548695/article/details/124146238)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [python数据结构与算法--回溯算法](https://blog.csdn.net/Melo0705/article/details/99728116)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值