乘法逆元

定理:如果a和m互质,并且m > 1,那么a模m的逆元存在。且逆元在模m的完全剩余系中唯一。

证明:根据贝祖定理,gcd (a, m) = 1, 存在正数 s 和 t 满足等式
sa+tm = 1,那么sa+tm ≡ 1 (mod m), 又因为 tm ≡ 0 (mod m),

我们利用扩展欧几里德定理,容易找出逆元的存在

void exgcd(int a,int b,int &x,int &y)
{
    int t;

    if (!b)
    {
        x = 1;
        y = 0;
        return;
    }
    exgcd(b, a%b, x, y);
    t = x;
    x = y;
    y = t - a/b*y;
}

int inverse(int a,int b)
{
    int x, y;

    exgcd(a, b, x, y);
    if (b < 0)
        b = -b;
    x = x % b;
    if (x < 0)
        x += b;

    return x;
}

x就是最小的正逆元

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值