(八)计算机数值方法之四阶Runge-Kutta算法

数学问题:

 利用四阶Runge-Kutta算法求解常微分方程: 

解决代码:

#include <iostream>
#include <iomanip>
using namespace std;
typedef void(*Func) (double x, int n, const double* y, double* dy);
void RK4(double x, double h, Func fun, int n, double* y)
{
    int i = 0;
    double* k1 = new double[n];
    double* k2 = new double[n];
    double* k3 = new double[n];
    double* k4 = new double[n];
    double* y2 = new double[n];
    double* y3 = new double[n];
    double* y4 = new double[n];
    fun(x, n, y, k1);
    for (i = 0; i < n; i++)
    {
        y2[i] = y[i] + h / 2 * k1[i];
    }
    fun(x + h / 2, n, y2, k2);
    for (i = 0; i < n; i++)
    {
        y3[i] = y[i] + h / 2 * k2[i];
    }
    fun(x + h / 2, n, y3, k3);
    for (i = 0; i < n; i++)
    {
        y4[i] = y[i] + h * k3[i];
    }
    fun(x + h, n, y4, k4);
    for (i = 0; i < n; i++)
    {
        y[i] +=h / 6.0 * (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]);
    }
    delete[] k1;
    delete[] k2;
    delete[] k3;
    delete[] k4;
    delete[] y2;
    delete[] y3;
    delete[] y4;
}

void fun3(double x, int n, const double* y, double* dy)
{ 
    dy[0] = y[1];
    dy[1] = 0.1 * (1 - y[0] * y[0]) * y[1] - y[0];
}

int main() {
    int i;
    double x = 0;
    double h = 0.2;
    double* y = new double[2];
    cin >> x;           
    cin >> y[0] >> y[1];    
    cin >> h;   
    for (i = 0; i < 1; i++)
    {
        x = i * h;
        RK4(x, h, fun3, 2, y);
        cout << fixed << setprecision(5) << y[0] << " " << y[1] << endl;
    }
    delete[] y;
}

使用方法:

第一行输入x值;

第二行输入y(x)和y`(x)值;

第三行输入步长h。

测试输入:

0

1 1

0.2

预期输出:

1.17850 0.77803

问题解决:

计算结果为:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值