使用“阿里云人工智能平台 PAI”制作数字人

体验 阿里云人工智能平台 PAI

PAI-DSW免费试用

https://free.aliyun.com/?spm=5176.14066474.J_5834642020.5.7b34754cmRbYhg&productCode=learn

https://help.aliyun.com/document_detail/2261126.html

体验PAI-DSW

https://help.aliyun.com/document_detail/2261126.html
在这里插入图片描述

基于Wav2Lip+TPS-Motion-Model+CodeFormer技术实现动漫风数字人

只需要输入一张动漫形象图片,以及你想让它说的文本内容,它就可以准确的说出你的文本内容并模仿人类的说话动作!

动漫形象的生成可以参考开源代码库 EasyPhoto 、案例easyphoto_diffusers、stable_diffusion_easyphoto。

语音生成相关案例可以参考:ai_singer_rvc、ai_singer_svc。

环境准备

克隆开源代码(网络不稳克隆容易失败,建议多尝试几次。)

#注意:Wav2Lip开源库不可商用,仅用于教学。请遵纪守法,不要用于非法活动。
!git clone https://github.com/Rudrabha/Wav2Lip.git

!git clone https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model.git

!git clone https://github.com/sczhou/CodeFormer.git

注释掉codeformer中的import bug:

!sed -i 's/from .version/# from .version/' CodeFormer/basicsr/__init__.py

初始化工作目录:

import os.path as osp

WORKDIR = osp.abspath('.')
print(f'work directory: {
     WORKDIR}')
WAV2LIP_WORKDIR = osp.join(WORKDIR, 'Wav2Lip')
print(f'wav2lip directory: {
     WAV2LIP_WORKDIR}')
CODEFORMER_WORKDIR = osp.join(WORKDIR, 'CodeFormer')
print(f'codeformer directory: {
     CODEFORMER_WORKDIR}')
MOTION_MODEL_WORKDIR = osp.join
### 阿里云 PAI 平台 GPU 使用教程与配置指南 阿里云 PAI(Platform of Artificial Intelligence)是一个综合性的机器学习平台,提供了丰富的功能模块以支持从数据预处理到模型训练再到部署的全流程。其中,PAI-EAS 是其核心组件之一,专注于模型的服务化部署和管理[^1]。 #### GPU 的重要性及其在 PAI 中的应用 GPU 在深度学习领域扮演着至关重要的角色,因其强大的并行计算能力能够显著加速模型训练和推理过程。PAI 提供了对 GPU 资源的支持,使得用户可以在高性能硬件上运行复杂的深度学习任务。具体而言: - **硬件支持**:PAI 支持多种类型的 GPU 硬件资源,包括 NVIDIA Tesla 和 A100 系列等高端显卡[^3]。 - **性能优化**:通过内置算法优化模型推理性能,减少延迟并提高吞吐量[^4]。 #### GPU 配置方法 为了充分利用 GPU 的潜力,在使用 PAI 进行模型开发和部署时,需完成以下几个方面的配置: 1. **环境准备** 用户可以通过 PAI Studio 或者命令行工具创建一个带有指定 GPU 类型的任务实例。例如,在提交分布式 TensorFlow 训练作业时,可以选择所需的 GPU 数量以及型号[^2]。 2. **框架适配** 不同深度学习框架对于 GPU 的利用率有所不同。因此,在实际操作前应确认所使用的框架版本是否已针对目标 GPU 型号进行了充分优化。通常情况下,默认安装包已经包含了必要的驱动程序和支持库文件。 3. **参数调整** 对于某些特定场景下的应用需求来说,可能还需要进一步微调一些高级选项来达到最佳效果。比如设置 batch size 大小、启用混合精度训练等功能都可以有效改善整体表现水平。 ```bash # 示例代码片段展示如何在Dockerfile中定义CUDA/CuDNN依赖关系以便更好地兼容NVIDIA GPUs. FROM nvidia/cuda:11.7-base-ubuntu20.04 RUN apt-get update && \ DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ build-essential \ cmake \ git \ wget \ python3-pip \ libopencv-dev ENV PATH="/usr/local/nvidia/bin:${PATH}" LD_LIBRARY_PATH="/usr/local/nvidia/lib:/usr/local/nvidia/lib64" ``` 上述脚本展示了构建适合 NIVIDIA 显卡工作的 Docker 镜像所需的基础步骤,其中包括但不限于 CUDA 工具链的选择及 OpenCV 开发套件引入等内容。 --- ### 性能优化建议 除了基本的资源配置外,还可以采取以下措施进一步提升基于 GPU 的工作负载效率: - 利用自动混合同精度 (AMP) 技术降低内存占用同时加快运算速度; - 合理规划批次大小(batch size),找到平衡点使单次迭代耗时不致过长也不至于浪费计算单元闲置时间; - 如果条件允许的话,则考虑采用多节点间通信机制实现更大规模的数据并行或者模型并行策略. 这些技巧不仅有助于缩短实验周期而且还能节省成本开支因为减少了不必要的等待开销. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值