目录
在Jupyter中新建一个notebook,在notebook进行操作。
三、读取“学生成绩统计.xlsx”表中4个sheet工作表数据
一、介绍Jupyter,使用Jupyter实现实操
Jupyter Notebook是一个开源的Web应用程序,允许创建和共享包含实时代码的文档,称为笔记本,使用者可以通过浏览器运行这些笔记本,并查看结果。
Python中对Jupyter的介绍:
-
Jupyter Notebook的安装:
在Python中使用Jupyter,首先需要安装它。可以通过pip安装:
或者使用conda安装:
2.运行Jupyter Notebook:
安装完成后,可以通过以下命令启动Jupyter Notebook:
启动后,会自动打开浏览器,并显示主页面。
3.创建一个新的Notebook:
点击界面右侧的"New"按钮,选择"Python 3",就可以创建一个新的Notebook文件。
4.使用Jupyter Notebook:
Notebook界面包括一个单元格,可以在其中编写和运行代码。单元格可以包含多种类型的内容,包括代码、标记文本(Markdown)、数学方程等。
例如,在单元格中输入以下Python代码:
5.然后按Shift + Enter运行单元格,输出结果将显示在下方。
6.保存和共享Notebook:
完成Notebook后,可以通过点击"File" -> "Download as" -> "Python (.ipynb)"来保存为.ipynb文件格式,该格式可以被Jupyter Notebook打开和运行。也可以将Notebook导出为其他格式,如HTML、PDF等。
以上是Jupyter Notebook在Python中的基本介绍和使用方法。
在Jupyter中新建一个notebook,在notebook进行操作。
二、引入pandas库
pandas是一个强大的数据处理和分析库,它提供了丰富的数据结构和函数,可以进行数据清洗、数据集成、数据分析和可视化等,引入pandas库后,你可以使用pandas的各种函数来操作数据。
三、读取“学生成绩统计.xlsx”表中4个sheet工作表数据
1.使用pandas函数来读取:
sheet1=pd.read_excel('data.excel') (使用 pandas 库中的read_excel 函数来读取名为 data.excel的 Excel 文件,并将第一个工作表(Sheet1)加载到变量sheet1 中。)
sheet_name='' (接收 str、int、list或None。表示Excel文件内数据的工作簿位置。默认为0)
sheet1.head() (pandas库中DataFrame对象的一个方法,用于查看DataFrame的前几行数据。head()方法默认显示前五行,但是你可以传入一个参数来指定显示的行数。)
(1).全班名单,及考勤数据 “全班名单”中记录了学生的名字和考勤信息(签到次数)
(2).第一、二、三次作业完成名单 “作业x完成名单”中记录了3次平时作业完成任务的同学的名字。
四、计算每个同学的平时成绩得分,保留2位小数
规定【平时成绩】的计算公式为:
平时成绩 = (签到次数/10)*20 + 3个平时作业的完成个数/3*20
1.方便计算的准备工作
(1).将每个“作业完成”的表格,加上一列1数字(第一个全班出勤表格就不需要增加) 在名为sheet2、sheet3、sheet4
表格中,给名为次数1、次数2、次数3
的列赋值为1,再用sheet2.head(2)查看其中一个数据。
(2).用姓名做索引合并数据
set_index是pandas中的一个方法,它可以将DataFrame的某一列设置为索引,再用sheet1.head(2)查看其中一个数据。
(3).合并数据到一个表格中,数据合并存在缺失值,将缺失值填充0
pd.concat()函数:将多个数据表格或者系列按照指定的轴进行合并。
sheet1、sheet2、sheet3、sheet4
都是pandas的DataFrame对象,它们将被合并为一个新的DataFrame data1。
axis参数:接收0或1。表示轴。0表示删除记录(行),1表示删除特征(列)。默认为0
join参数:接收str。表示其他轴向上的索引是按交集(inner,内连接)还是并集(outer,外连接)进行合并。默认为outer
fillna参数:用于填充DataFrame或Series对象中的缺失值。fillna(0)这个方法会将所有的缺失值替换为0。
(4).计算每位同学的作业完成次数
2.计算平时成绩
使用公式:
平时成绩 = (签到次数/10)*20 + 3个平时作业的完成个数/3*20