Java中等题-不同路径(力扣)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 2:

输入:m = 7, n = 3
输出:28

示例 3:

输入:m = 3, n = 3
输出:6

我的思路:可以使用回溯法,能考虑到所有情况,但是会超内存

下面是会超内存的错误示范:回溯法

class Solution {
    public int uniquePaths(int m, int n) {
        List<Integer> res=new ArrayList<>();
        int right=0;
        int down=0;
        backtrack(right, down, m - 1, n - 1,res);
        return res.size();


    }
    public static void backtrack(int right,int down,int m,int n,List<Integer> res){
        if(right==n&&down==m){//这里容易写错,如果写成if(right+down==m+n)的话,就会出错
            res.add(1);
             return;
        }
        if(right<n){
            backtrack(right+1,down,m,n,res);
        }
        if(down<m){
            backtrack(right,down+1,m,n,res);
        }
    }

   
}

我们来看看官方解题思路:动态规划 

每一步都只能由上面一步过来或者左边一步过来

用数组dp[][]表示到达这一步有几条路径

class Solution {
    public int uniquePaths(int m, int n) {
        if(m==1||n==1){
            return 1;
        }
        int dp[][]=new int[m][n];
        dp[0][0]=0;
        for(int i=1;i<n;i++){
            dp[0][i]=1;
        }
        for(int i=1;i<m;i++){
            dp[i][0]=1;
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];

    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值