一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下
示例 2:
输入:m = 7, n = 3 输出:28
示例 3:
输入:m = 3, n = 3 输出:6
我的思路:可以使用回溯法,能考虑到所有情况,但是会超内存
下面是会超内存的错误示范:回溯法
class Solution {
public int uniquePaths(int m, int n) {
List<Integer> res=new ArrayList<>();
int right=0;
int down=0;
backtrack(right, down, m - 1, n - 1,res);
return res.size();
}
public static void backtrack(int right,int down,int m,int n,List<Integer> res){
if(right==n&&down==m){//这里容易写错,如果写成if(right+down==m+n)的话,就会出错
res.add(1);
return;
}
if(right<n){
backtrack(right+1,down,m,n,res);
}
if(down<m){
backtrack(right,down+1,m,n,res);
}
}
}
我们来看看官方解题思路:动态规划
每一步都只能由上面一步过来或者左边一步过来
用数组dp[][]表示到达这一步有几条路径
class Solution {
public int uniquePaths(int m, int n) {
if(m==1||n==1){
return 1;
}
int dp[][]=new int[m][n];
dp[0][0]=0;
for(int i=1;i<n;i++){
dp[0][i]=1;
}
for(int i=1;i<m;i++){
dp[i][0]=1;
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}