Codeforces Round #369 (Div. 2)

A:


题意:

问一辆车上是否存在两个空的邻座


题解:

模拟


B:


题意:

给你一个n阶方阵,其中一个元素为0,问是否存在一个正整数填在0处使n阶方阵成为幻方。


题解:

将除0行外的一行求和减去含0的那行求和得到一个数,就是0处应填的值,再检查该方阵是否成为幻方,还要注意一点就是可能n阶方阵本来就是幻方了,所以还要检查填入的数是否为正整数。


#include<iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
using namespace std;
#define MAX_N 505
#define inf 0x7fffffff
#define LL long long
#define ull unsigned long long
#define mod 10007
LL INF=9e18;

LL a[MAX_N][MAX_N];
int main()
{
    int n;
    cin >> n;
    int row,col;
    LL sum = 0;
    LL tmp;
    for(int i=0;i<n;i++) {
        tmp = 0;
        for(int j=0;j<n;j++) {
            cin >> a[i][j];
            if(!a[i][j])
                row = i, col = j;
            tmp += a[i][j];
        }
        sum = max(sum, tmp);
    }
    if(n == 1) {
        cout << 1 << endl;
        return 0;
    }
    tmp = 0;
    for(int i=0;i<n;i++) {
        tmp += a[row][i];
    }
    a[row][col] = sum - tmp;
    bool flag = true;
    for(int i=0;i<n;i++) {
        tmp = 0;
        for(int j=0;j<n;j++) {
            tmp += a[i][j];
        }
        if(tmp != sum) {
            flag = false;
            break;
        }
        tmp = 0;
        for(int j=0;j<n;j++) {
            tmp += a[j][i];
        }
        if(tmp != sum) {
            flag = false;
            break;
        }
    }
    tmp = 0;
    for(int i=0;i<n;i++) {
        tmp += a[i][i];
    }
    if(tmp != sum) {
        flag = false;
    }
    tmp = 0;
    for(int i=0;i<n;i++) {
        tmp += a[i][n-1-i];
    }
    if(tmp != sum) {
        flag = false;
    }
    if(!a[row][col]) {
        flag = false;
    }
    if(flag) {
        cout << a[row][col] << endl;
    }
    else {
        cout << -1 << endl;
    }
}

C:


题意:

给你n棵树每棵树可能染色也可能没染色,颜色有m种,没染色的则为0,问能否将没染色的树染色使整行树形成k块(比如有10棵树分别为 2, 1, 1, 1, 3, 2, 2, 3, 1, 3 可以分为7块{2},{1,1,1},{3},{2,2},{3},{1},{3}),第i棵树染第j种颜色需要花费p[i][j]升颜料,问怎么染色花费颜料最少且能形成k块


题解:

设dp[i][j][k]为第i棵树染第j种颜色形成k个块需要花费的颜料,c[i]为第i棵树的初始颜色。

当第i棵树已染色dp[i][c[i]][k] = min(dp[i][c[i]][k], dp[i-1][j][k-1]) (j != c[i]) ; dp[i][c[i]][k] = min(dp[i][c[i]][k], dp[i-1][j][k]) (j == c[i]) ;

当第i棵树未染色dp[i][j][k] = min(dp[i][j][k], min(dp[i-1][j][k]+p[i][j], dp[i-1][t][k-1]+p[i][j])) (t != j); dp[i][j][k] = min(dp[i][j][k], dp[i-1][j][k]+p[i][j]) (t == j) ;

还有当第一棵树未染色时还要特殊处理一下。


#include<iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
using namespace std;
#define MAX_N 105
#define inf 0x7fffffff
#define LL long long
#define ull unsigned long long
#define mod 10007
LL INF=9e18;

LL dp[MAX_N][MAX_N][MAX_N];
LL p[MAX_N][MAX_N];
int c[MAX_N];
int main()
{
    int N, M, K;
    cin >> N >> M >> K;
    for(int i=1;i<=N;i++) {
        cin >> c[i];
    }
    for(int i=1;i<=N;i++) {
        for(int j=1;j<=M;j++) {
            cin >> p[i][j];
        }
    }
    for(int i=0;i<=N;i++) {
        for(int j=0;j<=M;j++) {
            fill(dp[i][j],dp[i][j]+N+1,INF);
        }
    }
    for(int i=1;i<=M;i++) {
        fill(dp[0][i], dp[0][i]+1, 0);
    }
    for(int i=1;i<=N;i++) {
        for(int j=1;j<=M;j++) {
            for(int k=1;k<=K;k++) {
                if(c[i]) {
                    if(c[i] == j) {
                        if(i==1&&k==1)
                            dp[i][j][k] = 0;
                        else
                            dp[i][j][k] = min(dp[i][j][k], dp[i-1][j][k]);
                    }
                    else
                        dp[i][c[i]][k] = min(dp[i][c[i]][k], dp[i-1][j][k-1]);
                }
                else {
                    for(int t=1;t<=M;t++) {
                        if(t==j) {
                            if(i==1&&k==1)
                                dp[i][j][k] = min(dp[i][j][k], p[i][j]);
                            else
                                dp[i][j][k] = min(dp[i][j][k], dp[i-1][j][k] + p[i][j]);
                        }
                        else
                            dp[i][j][k] = min(dp[i][j][k], min(dp[i-1][j][k]+p[i][j], dp[i-1][t][k-1]+p[i][j]));
                    }
                }
            }
        }
    }
    LL ans = INF;
    for(int i=1;i<=M;i++) {
        ans = min(ans, dp[N][i][K]);
    }
    if(ans == INF) {
        cout << -1 << endl;
    }
    else {
        cout << ans << endl;
    }
}

总结:

一开始C题想到用dp但是考虑到可能是个n^4的dp就觉得可能超时并且一些细节不知道怎么处理就没继续想dp了,后来一看题解还真是dp。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值