A:
题意:
问一辆车上是否存在两个空的邻座
题解:
模拟
B:
题意:
给你一个n阶方阵,其中一个元素为0,问是否存在一个正整数填在0处使n阶方阵成为幻方。
题解:
将除0行外的一行求和减去含0的那行求和得到一个数,就是0处应填的值,再检查该方阵是否成为幻方,还要注意一点就是可能n阶方阵本来就是幻方了,所以还要检查填入的数是否为正整数。
#include<iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
using namespace std;
#define MAX_N 505
#define inf 0x7fffffff
#define LL long long
#define ull unsigned long long
#define mod 10007
LL INF=9e18;
LL a[MAX_N][MAX_N];
int main()
{
int n;
cin >> n;
int row,col;
LL sum = 0;
LL tmp;
for(int i=0;i<n;i++) {
tmp = 0;
for(int j=0;j<n;j++) {
cin >> a[i][j];
if(!a[i][j])
row = i, col = j;
tmp += a[i][j];
}
sum = max(sum, tmp);
}
if(n == 1) {
cout << 1 << endl;
return 0;
}
tmp = 0;
for(int i=0;i<n;i++) {
tmp += a[row][i];
}
a[row][col] = sum - tmp;
bool flag = true;
for(int i=0;i<n;i++) {
tmp = 0;
for(int j=0;j<n;j++) {
tmp += a[i][j];
}
if(tmp != sum) {
flag = false;
break;
}
tmp = 0;
for(int j=0;j<n;j++) {
tmp += a[j][i];
}
if(tmp != sum) {
flag = false;
break;
}
}
tmp = 0;
for(int i=0;i<n;i++) {
tmp += a[i][i];
}
if(tmp != sum) {
flag = false;
}
tmp = 0;
for(int i=0;i<n;i++) {
tmp += a[i][n-1-i];
}
if(tmp != sum) {
flag = false;
}
if(!a[row][col]) {
flag = false;
}
if(flag) {
cout << a[row][col] << endl;
}
else {
cout << -1 << endl;
}
}
C:
题意:
给你n棵树每棵树可能染色也可能没染色,颜色有m种,没染色的则为0,问能否将没染色的树染色使整行树形成k块(比如有10棵树分别为 2, 1, 1, 1, 3, 2, 2, 3, 1, 3 可以分为7块{2},{1,1,1},{3},{2,2},{3},{1},{3}),第i棵树染第j种颜色需要花费p[i][j]升颜料,问怎么染色花费颜料最少且能形成k块
题解:
设dp[i][j][k]为第i棵树染第j种颜色形成k个块需要花费的颜料,c[i]为第i棵树的初始颜色。
当第i棵树已染色dp[i][c[i]][k] = min(dp[i][c[i]][k], dp[i-1][j][k-1]) (j != c[i]) ; dp[i][c[i]][k] = min(dp[i][c[i]][k], dp[i-1][j][k]) (j == c[i]) ;
当第i棵树未染色dp[i][j][k] = min(dp[i][j][k], min(dp[i-1][j][k]+p[i][j], dp[i-1][t][k-1]+p[i][j])) (t != j); dp[i][j][k] = min(dp[i][j][k], dp[i-1][j][k]+p[i][j]) (t == j) ;
还有当第一棵树未染色时还要特殊处理一下。
#include<iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
using namespace std;
#define MAX_N 105
#define inf 0x7fffffff
#define LL long long
#define ull unsigned long long
#define mod 10007
LL INF=9e18;
LL dp[MAX_N][MAX_N][MAX_N];
LL p[MAX_N][MAX_N];
int c[MAX_N];
int main()
{
int N, M, K;
cin >> N >> M >> K;
for(int i=1;i<=N;i++) {
cin >> c[i];
}
for(int i=1;i<=N;i++) {
for(int j=1;j<=M;j++) {
cin >> p[i][j];
}
}
for(int i=0;i<=N;i++) {
for(int j=0;j<=M;j++) {
fill(dp[i][j],dp[i][j]+N+1,INF);
}
}
for(int i=1;i<=M;i++) {
fill(dp[0][i], dp[0][i]+1, 0);
}
for(int i=1;i<=N;i++) {
for(int j=1;j<=M;j++) {
for(int k=1;k<=K;k++) {
if(c[i]) {
if(c[i] == j) {
if(i==1&&k==1)
dp[i][j][k] = 0;
else
dp[i][j][k] = min(dp[i][j][k], dp[i-1][j][k]);
}
else
dp[i][c[i]][k] = min(dp[i][c[i]][k], dp[i-1][j][k-1]);
}
else {
for(int t=1;t<=M;t++) {
if(t==j) {
if(i==1&&k==1)
dp[i][j][k] = min(dp[i][j][k], p[i][j]);
else
dp[i][j][k] = min(dp[i][j][k], dp[i-1][j][k] + p[i][j]);
}
else
dp[i][j][k] = min(dp[i][j][k], min(dp[i-1][j][k]+p[i][j], dp[i-1][t][k-1]+p[i][j]));
}
}
}
}
}
LL ans = INF;
for(int i=1;i<=M;i++) {
ans = min(ans, dp[N][i][K]);
}
if(ans == INF) {
cout << -1 << endl;
}
else {
cout << ans << endl;
}
}
总结:
一开始C题想到用dp但是考虑到可能是个n^4的dp就觉得可能超时并且一些细节不知道怎么处理就没继续想dp了,后来一看题解还真是dp。。