题意:
有四个小偷偷巧克力,并且他们偷的数量成等比数列(第一个偷a,第二个偷a*q,第三个偷a*q*q,第四个偷a*q*q*q),每个小偷最多不能偷超过n个巧克力,现在给出他们最多的偷法m,求最小的n。
比如:m=2,两种偷法为(1,2,4,8),(2,4,8,16),所以n最小为16
题解:
对于一个n,我们可以枚举q求解偷法m = ∑n/(i*i*i) (i=1;i*i*i<=n;i++)
所以对于某个n我们可以在O(n^1/3)求解,再二分n,当某个n求解得到的偷法等于m时该n可视为符合要求
#include<iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
using namespace std;
#define MAX_N 200005
#define inf 0x7fffffff
#define LL long long
#define ull unsigned long long
#define mod 1000000007
LL INF=9e18;
LL cal(LL n)
{
LL sum = 0;
for(LL i=2;i*i*i<=n;i++)
sum += (n/(i*i*i));
return sum;
}
int main()
{
LL m;
cin >> m;
LL low = 0;
LL up = INF;
LL ans = INF;
while(low < up) {
LL mid = (low + up) / 2;
LL tmp = cal(mid);
if(tmp >= m)
up = mid;
else
low = mid + 1;
if(tmp == m)
ans = mid;
}
if(ans == INF)
cout << -1 << endl;
else
cout << ans << endl;
}