题目链接:点击打开链接
题解:
先floyd算出各城市最短路径
设dp[i][j]=在第i个城市且送过了集合j(按位存城市集合,比如5表示送过了城市2、0)个城市。
然后枚举从小到大枚举j dp[i][j] = min(dp[k][j^(1<<i)]+dis[k][j]),边界为dp[0][1] = 0
最后答案就是 min(dp[i][(1<<n)-1])+dis[i][0]
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cmath>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
using namespace std;
#define MAX_N 110
#define inf 0x3f3f3f3f
#define LL long long
#define ull unsigned long long
const LL INF = 1e18;
const int mod = 1e8+7;
typedef pair<LL, LL>P;
int main()
{
int n;
int dis[15][15];
int dp[15][1<<15];
int way[15];
while(cin >> n && n) {
n++;
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
cin >> dis[i][j];
for(int k=0; k<n; k++)
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
dp[0][1] = 0;
for(int i=2; i<(1<<n); i++) {
for(int j=0; j<n; j++) {
if(i & (1<<j)) {
dp[j][i] = inf;
for(int k=0; k<n; k++) {
if(j == k)
continue;
if(i & (1<<k))
dp[j][i] = min(dp[j][i], dp[k][i^(1<<j)]+dis[k][j]);
}
}
}
}
int ans = inf;
for(int i=1; i<n; i++)
ans = min(ans, dp[i][(1<<n)-1]+dis[i][0]);
cout << ans << endl;
}
}