codeforce 792D Paths in a Complete Binary Tree

本文介绍了一个关于完全二叉树的问题及其解决方案,问题要求通过一系列指令(U、L、R)在按中序遍历顺序编号的完全二叉树上移动。文章提供了一种算法来确定当前节点的左、右子树的位置,并模拟了在树上的移动过程。
摘要由CSDN通过智能技术生成

题目链接:http://codeforces.com/problemset/problem/792/D


题意:

给出一个包含n个结点的完全二叉树,并且结点的编号是按中序遍历的顺序标号的,接下来有q个询问,每个询问包括一个点m表示你现在在编号为m的电上,和一个长度为u的字符串,字符串包括(U、L、R)表示向上、向左、向右,如果不能移动的话保持在原位。


题解:

观察中序遍历编号的二叉树我们可以得到一个点的左子树编号和右子树编号与改点的深度和最大深度有关,得到相应的关系即可模拟在二叉树上走。


#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<cmath>
#include<stdlib.h>
#include <string.h>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<sstream>
using namespace std;
#define MAX_N 55
#define inf 0x7f7f7f7f
#define LL long long
#define ull unsigned long long
const LL INF = 1e18;
const double Pi = acos(-1);
const int mod = 1e4+7;
typedef pair<int, int>P;

LL pow2(int x)
{
    LL ans = 1;
    while(x) {
        x--;
        ans *= 2;
    }
    return ans;
}
int main()
{
    LL n, q;
    cin >> n >> q;
    //向下寻路时保存向左还是向右
    while(q--) {
        LL m;
        char s[100005];
        cin >> m;
        scanf("%s", &s);
        LL d, maxd;
        maxd = log2(n);
        LL p = (n+1)/2;
        d = 0;
        int path[100005];
        int l = 0;
        while(p != m) {
            LL pp = pow2(maxd-d-1);
            LL lc = p-pp;
            LL rc = p+pp;
            LL maxc = lc + pp - 1;//左子树下的最大值
            if(maxc >= m)
                p = lc, d++, path[++l] = 0;
            else
                p = rc, d++, path[++l] = 1;
        }
        int len = strlen(s);
        for(int i=0; i<len; i++) {
            if(s[i] == 'U') {
                if(!l)
                    continue;
                LL pp = pow2(maxd-d);
                if(path[l] == 0)
                    p += pp;
                else
                    p -= pp;
                d--;
                l--;
            }
            else if(s[i] == 'L') {
                if(d == maxd)
                    continue;
                LL pp = pow2(maxd-d-1);
                d++;
                path[++l] = 0;
                p -= pp;
            }
            else {
                if(d == maxd)
                    continue;
                LL pp = pow2(maxd-d-1);
                d++;
                path[++l] = 1;
                p += pp;
            }
        }
        cout << p << endl;
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值