②基于分布式驱动电动汽车的路面附着系数估计,分别采用无迹卡尔曼滤波和容积卡尔曼滤波对电动汽车四个车轮的路面附着系数进行估计。
本模型参考sci二区顶刊,开发了分布式驱动电动汽车路面附着系数估计的进阶版本,可在高速,低速下,对开路面,对接路面四种组合工况下对路面附着系数进行准确估计估计。
该模型利用无迹卡尔曼滤波,容积卡尔曼滤波对路面附着系数分别进行估计,容积卡尔曼和无迹卡尔曼均由S- function编写,可比较二种滤波的估计效果。
Carsim和simulink联合仿真,高附着路面0.85,低附着路面0.3,对接路面
ID:86200749067929247
针不扎
基于分布式驱动电动汽车的路面附着系数估计
摘要:
随着电动汽车的普及和分布式驱动技术的发展,对驱动系统的精确控制和路面附着系数的准确估计成为了研究焦点。本文基于无迹卡尔曼滤波和容积卡尔曼滤波,提出了一种分布式驱动电动汽车路面附着系数估计模型,并通过Carsim和Simulink联合仿真进行验证。实验结果表明,该模型在不同工况下都能够准确估计路面附着系数。
-
引言
随着电动汽车的普及,对驱动系统的精确控制要求越来越高。驱动系统的控制需要准确的路面附着系数作为输入,以保证车辆的稳定性和安全性。因此,如何准确估计路面附着系数成为了研究的热点之一。 -
相关工作
在国内外的研究中,已经有一些针对路面附着系数估计的方法被提出。其中,无迹卡尔曼滤波和容积卡尔曼滤波被广泛应用于路面附着系数的估计中。 -
研究目标
本文旨在开发一种基于分布式驱动电动汽车的路面附着系数估计模型,该模型可以准确估计不同工况下的路面附着系数。 -
方法介绍
本文所提出的模型基于无迹卡尔曼滤波和容积卡尔曼滤波。无迹卡尔曼滤波是一种无需进行线性化的滤波算法,通过选择一组离散点来近似真实状态的概率分布,并通过无迹变换将这些离散点映射到测量空间。容积卡尔曼滤波则是一种基于测量的非线性滤波算法,通过将状态分布分成若干个不相交的子集,并计算每个子集对应的卡尔曼增益来进行状态估计。 -
实验设计
为了验证所提出的模型的有效性,本文采用Carsim和Simulink进行联合仿真。实验设置了高附着路面、低附着路面和对接路面三种工况,并分别对这三种工况下的路面附着系数进行估计。 -
结果分析
实验结果表明,所提出的模型能够在不同工况下准确估计路面附着系数。无论是在高速还是低速下,对开路面还是对接路面,模型都能够给出准确的估计值。 -
讨论与展望
本文提出的基于分布式驱动电动汽车的路面附着系数估计模型在实验中表现出了较好的性能。然而,仍然存在一些可以改进的地方。未来的研究可以考虑进一步优化算法以提高模型的精确度和鲁棒性。
总结:
本文提出了一种基于分布式驱动电动汽车的路面附着系数估计模型,并通过Carsim和Simulink的联合仿真进行验证。实验结果表明,该模型能够在不同工况下准确估计路面附着系数,具有一定的实用性和可行性。未来的研究方向可以考虑进一步优化算法以提高模型的准确性和可靠性。
以上相关代码,程序地址:http://fansik.cn/749067929247.html