有人在MC复刻《最伟大的作品》,有人用红石做卷积神经网络,还被LeCun转发

69275a54f9e7c1a9d6614a7b924f450b.png

来源:大数据文摘
本文约1400字,建议阅读6分钟
本文介绍了利用红石做卷积神经网络复刻《最伟大的作品》的情况。

ccc612d13c0509b121e671977f9be09d.png

周董的《最伟大的作品》MV毫无意外地火了。

B站1500万+播放,70万+弹幕,直接顶流,这也带动了很多up主的二次创作,B站甚至出现了一个杰威尔音乐发起的视频活动,叫“#周杰伦新歌二创大赛”。

0706c4daee81654f396a4a1e33c8fda2.png 

真·自己鬼畜自己……

比如这位up主,直接在MC(Minecraft,我的世界)中还原周杰伦《最伟大的作品》!

a52193e21fcd4c61446838c4ad646d44.gif

Up主 @-六氟化氙- 解释道,视频中棕色的方块可以发出各种音符的声音,然后用一定的速度把他们连接起来就可以做出一首音乐了。

当然,这显然不是MC能做的“最伟大的作品”,MC能做的可太多了!比如最近在B站上热门的一个视频——《世界首个纯红石神经网络!真正的红石人工智能》。

你敢信?

这个在MC中用红石创造的人工智能模型,是一个LeNet-5架构的手写数字识别模型,熟悉AI的同学,应该都知道这个架构,可以说是AI领域的入门经典模型了,相当于编程中“Hello World”。

但是这样的输入方式,大家大概都没见过。

b7a8dc8afbd4b8b7c9c30f2b55879efa.gif

MC中第一个LeNet-5架构神经网络

先带大家看一下MC中第一个LeNet-5架构的神经网络完成版大概的样子。

首先,你得在一块输入板上写下一个数字,这包括一个单脉冲式压力板和一个15×15的坐标屏幕(如上图)。

你在压力板上走出的轨迹就会显示在上面的坐标屏幕中。

随后,你输入的手写数字就会进入卷积层。

当然,因为卷积核没法移动,所以up主直接采取了堆叠的结构,就是搞N个卷积核,放到所有该进行卷积计算的位置,而后通过硬连接线连接到输入板上。

 50e38a1b75cf4b932fab1f19a7e086b5.gif 

同时,为了保证非线性性,输出还要经过ReLU函数,因为卷积核只有3×3,所以可以直接使用模电运算,并在输出端直接连接ReLU。

然后就是全连接层。

全连接层每层由若干个神经元构成,每个神经元都连接多个输入,并产生一个输出,神经元会将每个输入加权累加,然后代入一个激活函数输出。

加权求和是“线性分割”,而激活函数一定是非线性的,用于提升维度。

 928e17e832489aef59e572ce2b7c0302.png 

该模型使用tanh作为激活函数。

权重被储存在投掷器里(调整物品配比生成不同的频率的随机串),输入乘以权重后通过模电累加。

当然,这里合作者们采用了非常多巧妙的方式在MC中实现这一过程。下面是实际的神经元电路。

 95c3a4801cc31989e777f790a90bc754.png 

堆叠神经元,就得到了整个全连接层。

a5f6a0091a9dbdbacf7b190de1028ace.gif

在最后的输出层(以及层间缓存)需要使用这样一个模电计数器。

 210b64a224813ce1bf26aa6e918eb4d5.png

这个计数器可以统计模型输出的结果,并且显示到计数板上。

 2d8ca996207c2d3ae5d0b9b0df7b0764.gif 

最后电路会选取可能性最大的那个,将结果显示到输出版面上,该模型在MNIST数据集上准确率可以达到80%。

 4069d2e4b24bf0ecd4324e8c6fd15751.png 

最后再来看一下整个模型的总览,是不是很壮观?

b6d3a84b3a88e0c72993413269e7d8f9.png

进行一次预测计算需要20分钟

在MC中完成这项非凡壮举的除了up主本人,还有其他合作者。

d9b547e5193f4c30b08f141cbabcddd1.png

这个项目也被上传至GitHub,有兴趣的同学可以去看看。

https://github.com/leamoon/StochasticNet

作者表示,他们使用了非传统的计算方式——随机计算来实现神经网络,使得设计和布局上比传统的全精度计算简单许多,且单次理论识别时间仅为5分钟。受限于Minecraft的运算能力,实际识别时间超过20分钟。

并且模型的权重也是训练好了输入进模型的,在MC中训练模型估计还是不太现实。

视频一经发出,也在B站引发了很多讨论。

比如:CPU表示不服~

 369510791265315c2f014c5e261fdda8.png34f34f17dd7f3352661bbfd54d2a1f5b.png

还有:以后就不用TensorFlow和Pytorch了……

 dd3d0a3ece9fb07571c1fb31ab9dfbf3.png

不得不说,最重磅的还得是这一位。

2018年图灵奖获得者,LeNet架构提出者Yann LeCun教授在Twitter和Facebook上转发了这个项目!

 7eb419e3b3eeba0c1aa4eed7f6e152f1.png

这一波,可以说是非常惊喜了。期待以后还能在MC看到他们更多有意思的作品!

编辑:王菁

99f1f7f708d398937de08e72f244a63f.png

7ad08fb8e039a6e1bfebaea1c266e691.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值