数据派THU
码龄5年
  • 2,963,434
    被访问
  • 540
    原创
  • 371
    排名
  • 3,635
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2017-08-07
博客简介:

数据派THU

博客描述:
发布清华大学数据科学相关科研动态、教学成果及线下活动
查看详细资料
个人成就
  • 获得1,774次点赞
  • 内容获得1,329次评论
  • 获得10,161次收藏
创作历程
  • 362篇
    2022年
  • 741篇
    2021年
  • 590篇
    2020年
  • 482篇
    2019年
  • 463篇
    2018年
  • 123篇
    2017年
成就勋章
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

UNet 和 UNet++:医学影像经典分割网络对比

来源:极市平台本文约3000字,建议阅读5分钟本文介绍了医学影像经典分割网络的对比。介绍语义分割是计算机视觉的一个问题,我们的任务是使用图像作为输入,为图像中的每个像素分配一个类。在语义分割的情况下,我们不关心是否有同一个类的多个实例(对象),我们只是用它们的类别来标记它们。有多种关于不同计算机视觉问题的介绍课程,但用一张图片可以总结不同的计算机视觉问题:语义分割在生...
转载
发布博客 前天 17:00 ·
10 阅读 ·
0 点赞 ·
0 评论

Michael Page:2022人才趋势报告

来源:数据局本文多图,建议阅读5分钟本文为你分享2022人才趋势报告。
转载
发布博客 前天 17:00 ·
3 阅读 ·
0 点赞 ·
0 评论

多目标追踪小抄:快速了解MOT的基本概念

来源:Deephub Imba本文共2400字,建议阅读5分钟本文介绍了MOT的基本概念。多目标跟踪(Multiple Object Tracking)MOT 获取单个连续视频并以特定帧速率 (fps) 将其拆分为离散帧以输出。检测每帧中存在哪些对象标注对象在每一帧中的位置关联不同帧中的对象是属于同一个对象还是属于不同对象MOT的典型应用多目标跟踪(MOT)用于交通控制...
转载
发布博客 前天 17:00 ·
58 阅读 ·
0 点赞 ·
0 评论

万字专栏总结 | 离线强化学习(OfflineRL)总结(原理、数据集、算法、复杂性分析、超参数调优等)...

本文来源自知乎博客,作者:旺仔搬砖记本文约13000字,建议阅读16分钟本文详细的阐述了强化学习到离线强化学习的发展过程,并就一些经典的问题进行了解释和说明。由于内容过长,本文仅展示部分内容,完整系列博客请文末阅读原文。离线强化学习(Offline RL)作为深度强化学习的子领域,其不需要与模拟环境进行交互就可以直接从数据中学习一套策略来完成相关任务,被认为是强化学习落...
转载
发布博客 2022.05.20 ·
52 阅读 ·
0 点赞 ·
0 评论

谷歌让机器人充当大语言模型的手和眼,一个任务拆解成16个动作一气呵成

来源:机器之心本文共2000字,建议阅读5分钟本文介绍了机器人在大语言模型中的进展。大模型在机器人领域找到了用武之地。「我把饮料撒了,你能帮我一下吗?」这是我们日常生活中再正常不过的一句求助语。听到这句话,你的家人或朋友往往会不假思索地递给你一块抹布、几张纸巾或直接帮你清理掉。但如果换成机器人,事情就没有那么简单了。它需要理解「饮料撒了」、「帮我一下」是什么意思,以及到...
转载
发布博客 2022.05.20 ·
9 阅读 ·
0 点赞 ·
0 评论

【ICML2022】可达性约束强化学习

来源:专知本文为论文,建议阅读5分钟本文提出了一种可达性CRL (RCRL)方法,利用可达性分析来刻画最大可行集。约束强化学习(CRL)最近引起了人们的极大兴趣,因为满足安全约束对现实世界的问题至关重要。然而,现有的CRL方法对折现累积成本的约束通常缺乏严格的定义和安全性保证。另一方面,在安全控制研究中,安全被定义为持续满足一定的状态约束。这种持久安全只在状态空间的一...
转载
发布博客 2022.05.20 ·
17 阅读 ·
0 点赞 ·
0 评论

基于图注意力机制和Transformer的异常检测

来源:专知本文为论文,建议阅读6分钟本文提出了一种基于图注意力和Transformer的异常检测模型。异常检测对电力行业的发展有着重要的影响,如何根据大规模电力数据进行异常检测是重要的研究热点.目前,大多数研究通过聚类或神经网络进行异常检测. 但是这些方法忽略了时序数据之间潜在的关联关系及某些特点的重要信息,没有充分挖掘出数据的潜在价值. 因此,提出了一种基于图注意力和...
转载
发布博客 2022.05.19 ·
59 阅读 ·
0 点赞 ·
0 评论

3D 可视化卷积、池化!终于能看懂神经网络到底在干啥了...

来源:量子位(公众号id:qbitai)本文约1100字,建议阅读6分钟神经网络在工作的时候,里面到底是什么样?为了能透视这个“AI黑箱”中的过程,加拿大蒙特利尔一家公司开发一个3D可视化工具Zetane Engine。只需要上传一个模型,Zetane Engine就可以巡视整个神经网络,并且还可以放大网络中的任何一层,显示特征图,看清流水线上的每一步:△图注:卷积层...
转载
发布博客 2022.05.19 ·
20 阅读 ·
0 点赞 ·
0 评论

【CVPR2022】循环动态嵌入的视频目标分割

来源:专知本文为论文,建议阅读5分钟我们设计了一种新的自校正策略,使网络能够修复存储库中不同质量的掩模嵌入。基于时空记忆(STM)的视频对象分割(VOS)网络通常每隔几帧不断增加存储库,表现出良好的性能。然而,1)随着视频长度的增加,硬件无法承受不断增长的内存需求。2)存储大量的信息不可避免地会引入大量的噪声,这不利于从存储库中读取最重要的信息。在本文中,我们提出一种循...
转载
发布博客 2022.05.18 ·
20 阅读 ·
0 点赞 ·
0 评论

只需要十分之一数据,就能通关四大视觉任务,居然还开源了!

本文约5800字,建议阅读10分钟OpenGVLab开源超高性能预训练模型,节省90%数据量!分类、目标检测、语义分割、深度估计,四大任务一网打尽!Github链接:https://github.com/opengvlab家人们,你们有没有这种苦恼?搬一次家就换一次家具,那些又贵又重的家具既不好搬运,又不好全部带走。下一次又重新购置一遍家具,浪费钱不说,关键是来来回回都...
转载
发布博客 2022.05.17 ·
543 阅读 ·
0 点赞 ·
0 评论

ICLR 2022的10篇论文推荐

来源:DeepHub IMBA本文约4800字,建议阅读10+分钟本文与你分享ICLR 2022的机器学习研究相关论文。一、Autoregressive Diffusion ModelsEmiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, Tim ...
转载
发布博客 2022.05.17 ·
66 阅读 ·
0 点赞 ·
0 评论

改善图形神经网络,提升GNN性能的三个技巧

来源:DeepHub IMBA本文约2800字,建议阅读8分钟本文总结了一些技巧来提高 GNN 模型的性能。GNN 提供了一种在图结构化数据上使用深度学习技术的方法。图结构数据无处不在:从化学(例如分子图)到社交媒体(例如社交网络)以及金融投资(例如 VC 投资网络),GNN 在各种任务中显示出最先进的性能¹ ²。在我的以前的一个实践:在投资者、初创公司和个人组成的投...
转载
发布博客 2022.05.16 ·
79 阅读 ·
0 点赞 ·
0 评论

多任务学习模型ESMM原理与实现(附代码)

来源:DataFunTalk本文约2500字,建议阅读5分钟文章基于 Multi-Task Learning (MTL) 的思路,提出一种名为ESMM的CVR预估模型。[ 导读 ]本文介绍的是阿里巴巴团队发表在 SIGIR’2018 的论文《Entire Space Multi-Task Model: An Effective Approach for Estimat...
转载
发布博客 2022.05.16 ·
19 阅读 ·
0 点赞 ·
0 评论

基于梯度提升(Boosting )的回归树简介

来源:DeepHub IMBA本文约500字,建议阅读5分钟Boosting 是一种松散的策略,它将多个简单模型组合成一个复合模型。Boosting 是一种松散的策略,它将多个简单模型组合成一个复合模型。这个想法的理论来自于随着我们引入更多的简单模型,整个模型会变得越来越强大。在 boosting 中,简单模型称为弱模型或弱学习器。在回归的背景下,第一个简单模型只是一...
转载
发布博客 2022.05.15 ·
24 阅读 ·
0 点赞 ·
0 评论

​ViT训练的全新baseline!

‍‍‍‍来源:机器之心本文约3500字,建议阅读10+分钟本文为你介绍ViT的三种数据增强方法。本文提出了训练视觉 Transformer(ViT)的三种数据增强方法:灰度、过度曝光、高斯模糊,以及一种简单的随机修剪方法 (SRC)。实验结果表明,这些新方法在效果上大大优于 ViT 此前的全监督训练方法。Transformer 模型 [55] 及其衍生模型在 NLP ...
转载
发布博客 2022.05.15 ·
26 阅读 ·
0 点赞 ·
0 评论

特征选择:11 种特征选择策略总结

来源:DeepHub IMBA本文约4800字,建议阅读10+分钟本文与你分享可应用于特征选择的各种技术的有用指南。太多的特征会增加模型的复杂性和过拟合,而太少的特征会导致模型的拟合不足。将模型优化为足够复杂以使其性能可推广,但又足够简单易于训练、维护和解释是特征选择的主要工作。“特征选择”意味着可以保留一些特征并放弃其他一些特征。本文的目的是概述一些特征选择策略:删...
转载
发布博客 2022.05.14 ·
54 阅读 ·
0 点赞 ·
0 评论

【经典书】贝叶斯统计学Python实战,第二版

来源:专知本文为书籍,建议阅读5分钟通过这本书,您将学习如何使用Python代码而不是数学公式解决统计问题。如果你知道如何编程,你就准备好处理贝叶斯统计了。通过这本书,您将学习如何使用Python代码而不是数学公式解决统计问题,使用离散的概率分布而不是连续的数学。你把数学弄得一清二楚,贝叶斯的基本原理将变得更清晰,你将开始把这些技术应用到现实世界的问题上。贝叶斯统计方...
转载
发布博客 2022.05.14 ·
19 阅读 ·
0 点赞 ·
0 评论

GAN「一生万物」, ETH、谷歌用单个序列玩转神经动作合成,入选SIGGRAPH

来源:机器之心本文约2000字,建议阅读5分钟酷炫的神经动作合成技术,单个序列就能完成。生成逼真且多样化的人体动作是计算机图形学的长期目标。对于动作建模和合成来说,研究者通常使用概率模型来捕获有限的局部变化或利用动作捕捉(mocap)获得的大型动作数据集。在阶段设置(stage-setting)和后期处理(例如,涉及手动数据清理)中,使用动作捕捉系统捕获数据的成本很高...
转载
发布博客 2022.05.14 ·
13 阅读 ·
0 点赞 ·
0 评论

合作|中国人寿财险联合清华大学共同推出工艺危害分析工具

在安全生产管理中,对工艺危害数据的智能化分析与综合,有助于企业了解自身工艺安全风险的分布,利用有限的资源去控制重大风险,从而助力企业实现成本最优。新《安全生产法》、《安全生产责任保险实施办法》等法律法规及政策文件对安全生产责任保险的承保公司提供事故预防服务提出了强制性要求。在此背景下,中国人寿财险携手清华大学成立清华-中国人寿财险工业安全大数据联合研究中心(以下简称“研究...
转载
发布博客 2022.05.13 ·
32 阅读 ·
0 点赞 ·
0 评论

Pandas 对数值进行分箱操作的4种方法总结对比

来源:DeepHub IMBA本文约1500字,建议阅读5分钟我们将讨论使用 python Pandas 库对数值进行分箱的 4 种方法。分箱是一种常见的数据预处理技术有时也被称为分桶或离散化,他可用于将连续数据的间隔分组到“箱”或“桶”中。在本文中,我们将讨论使用 python Pandas 库对数值进行分箱的 4 种方法。我们创建以下合成数据用于演示import ...
转载
发布博客 2022.05.13 ·
83 阅读 ·
0 点赞 ·
0 评论
加载更多