【干货书】Python强化学习算法:学习、理解和开发智能算法以应对人工智能挑战...

7e89123fc6d3a80189a7d3303c3b52b6.png

来源:专知
本文为书籍介绍,建议阅读5分钟
读完本书后,你将使用关键的强化学习算法来克服现实应用中的挑战,并成为强化学习研究社区的一员。

f5d96bed6a702adb741364e61ac32f9b.png

强化学习(RL)是人工智能的一个流行和有前途的分支,它涉及建立更智能的模型和智能体,这些模型和智能体可以根据不断变化的需求自动确定理想的行为。本书将帮助你掌握RL算法,并在构建自学习智能体时理解它们的实现。

从介绍强化学习环境中工作所需的工具、库和设置开始,本书涵盖了强化学习的构建模块,并深入研究了基于值的方法,如Q-learning和SARSA算法的应用。您将学习如何使用Q学习和神经网络的组合来解决复杂问题。此外,在学习DDPG和TD3确定性算法之前,我们还将学习策略梯度方法TRPO和PPO,以提高性能和稳定性。本书还介绍了模仿学习技术的工作原理,以及Dagger如何教会智能体驾驶。您将发现进化策略和黑盒优化技术,并了解它们如何改进RL算法。最后,你将学习探索方法,如UCB和UCB1,并开发一个名为ESBAS的元算法。

读完本书后,你将使用关键的强化学习算法来克服现实应用中的挑战,并成为强化学习研究社区的一员。

https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python

内容目录:

1 The Landscape of Reinforcement Learning
2 Implementing RL Cycle and OpenAI Gym
3 Solving Problems with Dynamic Programming
4 Q-Learning and SARSA Applications
5 Deep Q-Network
6 Learning Stochastic and PG Optimization
7 TRPO and PPO Implementation
8 DDPG and TD3 Applications
9 Model-Based RL
10 Imitation Learning with the DAgger Algorithm
11 Understanding Black-Box Optimization Algorithms
12 Developing the ESBAS Algorithm
13 Practical Implementation for Resolving RL Challenges

4c3b685201c3f17c6f65fbd7a2250a34.png

1cd167a41c0499f27a817785e72dc8c1.png

e2d3d08bc6b87b46c706821dac93c38c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值