【牛津大学博士论文】量子自然语言处理范畴论

文章介绍了量子自然语言处理(QNLP)模型,基于语法纠缠的理论,利用范畴论将语言结构映射到量子比特。通过DisCoPy工具包,QNLP模型将句子的语法结构转化为量子电路,并采用经典-量子混合算法进行训练。图微分的概念被用来学习最优参数,推广了函子学习的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

e0545270861a3e72179ffe21e3e4a0bc.png

来源:专知
本文为论文介绍,建议阅读5分钟
本文介绍了量子自然语言处理(QNLP)模型,其基础是计算语言学和量子力学之间的一个简单而强大的类比:语法纠缠。

0b2b1620b833f71d65c51c89b918f6e4.png

本文介绍了量子自然语言处理(QNLP)模型,其基础是计算语言学和量子力学之间的一个简单而强大的类比:语法纠缠。文本和句子的语法结构将单词的含义联系起来,就像纠缠结构将量子系统的状态联系起来一样。范畴论可以使这种语言到量子比特的类比形式化:它是一个从语法到向量空间的monoidal函子。将这种抽象的类比转化为具体的算法,将语法结构转换为参数化量子电路的架构。然后,我们使用经典-量子混合算法来训练模型,以便在评估电路时计算数据驱动任务中句子的含义。

QNLP模型的实现推动了DisCoPy(分布式组合Python)的发展,第一章对应用范畴论的工具包进行了全面概述。字符串图是DisCoPy的核心数据结构,它们允许在高抽象级别上推理计算。展示了它们如何编码语法结构和量子电路,以及逻辑公式、神经网络或任意Python代码。Monoidal函子允许将这些抽象的图转换为具体的计算,并与优化的特定任务库进行接口。

第二章使用DisCopy将QNLP模型实现为从语法到量子电路的参数函子。它为函子学习的更一般的概念提供了第一个概念证明:通过从类似图的数据中学习,将机器学习从函数推广到函子。为了通过梯度下降学习最优函子参数,引入了图微分的概念:一种用于计算参数化图梯度的图形演算。

https://www.zhuanzhi.ai/paper/2926740ae817b839b6599f4b87e1e49b

5a4c885ec07e0c87d770117e13d2d2ca.png

32482e6315ddea4c40b6056ce0486178.png

6e98a2118edec3e3e8de5a4413cfff4a.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值