【2023新书】可信机器学习实战:透明和公平的AI流程

本书面向工程师和数据科学家,提供了构建安全、鲁棒、无偏见且可解释的机器学习模型的实用方法。内容涵盖了解释模型、公平性与隐私问题、抵御攻击的策略以及管理信任债务等方面,旨在帮助读者在复杂环境中部署可信的AI应用。
摘要由CSDN通过智能技术生成

3ce7037635eead57bffd8b1995bd104a.png

来源:专知
本文为书籍介绍,建议阅读5分钟有了这本书,工程师和数据科学家将获得急需的基础,以便将可信的ML应用程序发布到一个嘈杂、混乱且通常充满敌意的世界。

11c679c3961e02bd6c05748703925ef7.png

随着人工智能在医学、法律和国防等高风险领域的使用越来越多,组织花费大量时间和金钱使ML模型可信。许多关于这个主题的书都深入探讨了理论和概念。本指南提供了一个实用的起点,以帮助开发团队生成安全、更鲁棒、更少偏差和更易于解释的模型。

作者Yada Pruksachatkun、Matthew McAteer和Subhabrata Majumdar将学术文献中管理数据集和构建模型的最佳实践转化为构建行业级可信机器学习系统的蓝图。有了这本书,工程师和数据科学家将获得急需的基础,以便将可信的ML应用程序发布到一个嘈杂、混乱且通常充满敌意的世界。

你将学习:

向利益相关者解释机器学习模型及其输出的方法

如何识别和修复ML管道中的公平性问题和隐私泄露

如何开发鲁棒且安全的机器学习系统以抵御恶意攻击

重要的系统性考虑,如如何管理信任债务以及哪些ML障碍需要人工干预

https://www.oreilly.com/library/view/practicing-trustworthy-machine/9781098120269/

1fbe765d86002216511233e8b5207269.png

10b92b1034bcdca5d4f7cf5810797d77.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值