来源:专知
本文约1000字,建议阅读5分钟
本教程的目标是帮助参与者全面理解这些AI模型如何有效地对具有异质结构与动态过程的经验网络系统进行表征、预测与控制。
The Web Conference 是互联网和万维网技术领域最具影响力的会议之一,也是中国计算机学会(CCF)推荐的A类国际学术会议。The Web Conference 2025会议将于2025年4月28日至5月2日在澳大利亚悉尼举行。
本教程将探讨一个令人着迷的研究领域:通过人工智能(AI)技术对经验网络(empirical networks)进行建模,并展示其在社交媒体、网络系统以及城市环境等多个领域的实际应用。参与者将深入了解如何将先进的AI方法——如图机器学习(Graph Machine Learning)、深度强化学习(Deep Reinforcement Learning)和生成模型(Generative Models)——融合于复杂网络科学中。
本教程的目标是帮助参与者全面理解这些AI模型如何有效地对具有异质结构与动态过程的经验网络系统进行表征、预测与控制。教程将重点围绕两个核心内容展开:首先,提出一个新颖的分类体系,该体系将复杂网络中的六大关键研究问题与相应的AI方法进行系统归类;其次,展示AI增强型网络建模工具在多个应用领域中的实际使用案例。
这些应用领域包括:
社交网络(涵盖信息传播、社会行为、协作与竞争等现象);
城市网络(涉及基础设施系统与各种城市动态过程);
人工神经网络(其本身即具备复杂网络结构特征)。
通过本教程,参与者将掌握如何在现实场景中实施与调整AI工具,以实现对复杂网络的分析、预测与管理,从而具备应对多样网络问题的实践能力。
关于我们
数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。
新浪微博:@数据派THU
微信视频号:数据派THU
今日头条:数据派THU