数据蒋堂 | SQL是描述性语言?

640?wx_fmt=png

作者:蒋步星

来源:数据蒋堂

本文共1200字,建议阅读8分钟
用SQL写代码时一般不用再关心变量、循环的具体动作,但要操心表、字段这些概念上的计算过程。

640?wx_fmt=png


我们在学习SQL时,常常会看到这样的论调:SQL是一种描述性语言,你只需要告诉它要做什么,而不需要告诉它怎么做,它会自己找到实现方法。也就是说,你要只用它描述任务目标,而不需要说明计算过程,这和传统的过程式语言有本质的差别。


真是这样的吗?


试一个例子,我们用SQL来查询员工中中国男性的数量,写出来是这样:


 
 
SELECT COUNT(*) FROM 员工表 WHERE 国籍='中国' AND 性别='男'


看起来是这样,我们不需要关心具体的计算过程(遍历员工表中每一条记录,碰到符合条件的则计数加1,不符合条件者略过,最后看计数),只要说清要查询的目标就可以了。


再举一例,按部门统计女员工的平均工资:


 
 
SELECT 部门,AVERAGE(工资) FROM 员工表 WHERE 性别='女' GROUP BY 部门


也不错,在这里我们确实不必关心到底如何分组和计算平均。


尽管SQL仍然是一种严格语法,我们经过一定的学习才能写出正确的语句,但如果能不关心计算过程,那还是会省很多事的。




我们再看一个例子:找出销售额贡献度在前一半的大客户。如果设计一下计算过程,那么很容易想到这样的流程:


  1. 计算所有客户的总销售额,记为S;

  2. 把客户按销售倒排序,即大的在前小的在后;

  3. 按2的列表从0开始累加客户的销售额,超过S/2时停止,则已经遍历过后客户则是目标客户。


那么,用SQL写出来是什么样的呢?


 
 
SELECT 客户,销售额,销售额累计FROM ( SELECT 客户,销售额,SUM(销售额) OVER (ORDER BY 销售额 DESC) 销售额累计 FROM 订单统计表)WHERE 2*销售额累计 < (SELECT SUM(销售额) FROM 订单统计表)


仔细看一下这个SQL(我没想出更简单的写法了),它几乎是在严格地描述上述过程,所不同的只是书写次序(SQL把开始计算总销售额写在了后面),和微小的逻辑差异(要把所有的累计销售额计算出来,再找出前面的)。


说好的只要描述任务目标而不必关心计算过程呢?




再看简单一些的例子:查询销售额贡献最多的10名客户。

某些SQL写出来是这样:


 
 
SELECT TOP 10 客户 FROM 订单统计表 ORDER BY 销售额 DESC


如果用某著名数据库来做,还得用子查询:


 
 
SELECT 客户 FROM ( SELECT rownumber rn,客户 FROM 订单统计表 ORDER BY 销售额 DESC )WHERE rn<=10


这两个SQL都明白无误地告诉我们计算过程:按销售额倒排序之后取前面10个。




如果再找个数百行的SQL(存储过程)来看,则可以更清楚地看到SQL照样在解释计算过程,而且不同的计算过程还会带来截然不同的计算性能甚至计算结果。


其实。任何程序设计语言都可以说在某种程度下的描述性语言:只需要关心目标而不必关心过程。如用Java写程序,你只要关心变量如何变化,而不必关心CPU中寄存器的动作,但用汇编语言就要关心;同样,而用汇编语言时,虽然你要关心寄存器的取值,但却不必关心CPU里与非门是如何动作的;用SQL写代码时一般不用再关心变量、循环的具体动作,但要操心表、字段这些概念上的计算过程。SQL和其它程序设计语言在描述问题的解决方法上只是抽象层次不同,对于过程的说明并没有任何本质的不同。


前面那两个例子之所以让我们感觉SQL象是所谓描述性语言,只是因为情况非常简单,恰好只是SQL抽象层次内的基本运算。而SQL因为长得又很象英语,在简单情况时易读易写,更容易给人这种错觉。


SQL是非常成功的程序语言,但说它是一种与众不同的描述性语言,却是一句鬼话。拿一些简单问题举例,能蒙骗住暂时没有深入思考的人。其实,只要把问题稍复杂化一点,这个说法就会露馅。可惜,很多人都不会去做哪怕一点点地深入求证,而只是人云亦云。SQL不比其它语言有更多的“描述性”,这并不减少SQL的成功程度。


专栏作者简介

640?

润乾软件创始人、首席科学家


清华大学计算机硕士,中国大数据产业生态联盟专家委员,著有《非线性报表模型原理》等,1989年,中国首个国际奥林匹克数学竞赛团体冠军成员,个人金牌;2000年,创立润乾公司;2004年,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准;2014年,经过7年开发,润乾软件发布不依赖关系代数模型的计算引擎——集算器,有效地提高了复杂结构化大数据计算的开发和运算效率;2015年,润乾软件被福布斯中文网站评为“2015福布斯中国非上市潜力企业100强”;2016、2017年,荣获中国电子信息产业发展研究院评选的“中国软件和信息服务业十大领军人物”;2017年度中国数据大工匠、数据领域专业技术讲堂《数据蒋堂》创办者。


数据蒋堂

《数据蒋堂》的作者蒋步星,从事信息系统建设和数据处理长达20多年的时间。他丰富的工程经验与深厚的理论功底相互融合、创新思想与传统观念的相互碰撞,虚拟与现实的相互交织,产生出了一篇篇的沥血之作。此连载的内容涉及从数据呈现、采集到加工计算再到存储以及挖掘等各个方面。大可观数据世界之远景、小可看技术疑难之细节。针对数据领域一些技术难点,站在研发人员的角度从浅入深,进行全方位、360度无死角深度剖析;对于一些业内观点,站在技术人员角度阐述自己的思考和理解。蒋步星还会对大数据的发展,站在业内专家角度给予预测和推断。静下心来认真研读你会发现,《数据蒋堂》的文章,有的会让用户避免重复前人走过的弯路,有的会让攻城狮面对扎心的难题茅塞顿开,有的会为初入行业的读者提供一把开启数据世界的钥匙,有的甚至会让业内专家大跌眼镜,产生思想交锋。


数据蒋堂第二年往期回顾:


数据蒋堂 | 存储和计算技术的选择

数据蒋堂 | 人工智能中的“人工”

数据蒋堂 | 中国报表漫谈

数据蒋堂 | 内存数据集产生的隐性成本

数据蒋堂 | 多维分析预汇总的功能盲区

数据蒋堂 | 多维分析预汇总的存储容量

数据蒋堂 | 多维分析预汇总的方案探讨

数据蒋堂 | 数据库的封闭性

数据蒋堂 | 内存数据集产生的隐性成本

数据蒋堂 | 前半有序的大数据排序

数据蒋堂 | “后半”有序的分组

数据蒋堂 | 时序数据从分表到分库

数据蒋堂 | BI系统的前置计算

640?wx_fmt=jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值