- 博客(31)
- 收藏
- 关注
原创 产品学习笔记
做原型设计和写产品需求文档时,因为时间和需求繁多的关系,很容易在书写时容易遗留一些注意事项。为了避免在需求评审或者开发阶段才发现问题,产品经理需要总结一份自查表或者PRD模板,从而避免细节遗漏。将几个对比的产品,从以上几个维度进行分析对比,挖掘各自优缺点。结合该产品的历史版本迭代记录和结合市场分析做出运营体系梳理。梳理下产品功能清单(尽量无遗漏的写出来),可使用思维导图。把该产品的核心流程及其有关联的流程全部梳理出来。和页面流程梳理有必要整理出来。梳理下该产品的盈利模式。
2022-10-10 13:58:10 279
原创 项目管理_开发排期
此外,还需要根据前后端开发排期来决定联调是统一联调还是分批次联调,提测是统一提测还是分批提测。这部分的选择取决于上线时间与前后端功能开发完成时间的时间间隔。若时间来不及,则需要将优先级高的必须确保上线的功能优先完成前后端开发,并优先进行联调和提测。在项目进行的前期,需求评审之后,项目经理或产品经理需要了解前后端的开发排期,从而对项目进度进行管理与把控。为了避免反复沟通,最好让前后端一次性给到。之后测试同事会依据开发情况,安排测试计划。需求评审完之后,需要前后端及测试依据功能。
2022-09-29 10:42:10 1202
原创 测试Review
首先分为功能测试和非功能测试。包含了单元测试、集成测试、系统测试、健全性测试、冒烟测试、接口测试、回归测试、Beta/验收测试。包含了性能测试、负载测试、压力测试、容量测试、安全测试、恢复测试、可靠性测试、可用性测试、一致性测试、本地化测试。
2022-08-22 16:31:23 284
原创 B端产品经理在细分领域深耕要求
作为一名B端产品经理,如果想在某个细分领域深耕,需要做到如下几点。● 掌握该领域的所有方法论和专业知识。● 对该领域的业务运营特点和难点有深刻的认知和总结。●对市面上所有该领域的商业化软件产品如数家珍,优缺点了然于心。● 了解市场上所有类似业务模式公司的业务特点、产品特点。● 认识行业内的相关专家,形成圈子,经常聚会探讨行业的案例和变化。● 理解公司的业务现状、痛点,知道如何将行业最佳实践结合公司特点进行规划落地。如果能做到以上几点,那么你在公司里一定是一个无法替代的资深专家,并且也会受到其他公司
2022-08-05 11:10:33 212
原创 冷启动和热启动
一、冷启动推荐系统中很多点击率预估模型都是强烈依赖于对用户过去信息以及对广告过去表现来建模的。当面对新的用户或者新的广告的时候,由于缺乏历史数据,对于推荐系统来说,就需要特殊进行处理,于是就有了“冷启动”的问题。冷启动面临的问题:如何给新的用户推荐满意的合适的物品?如何将新的广告(物品)分发出去,推荐给喜欢的用户?冷启动主要分为三类: 用户冷启动、物品冷启动、系统冷启动。用户冷启动:如何给新用户做个性化推荐?物品冷启动:如何将新物品推荐给感兴趣的用户?系统冷启动:如何在一个没有任何用
2022-05-27 11:45:18 1946
原创 冒烟测试与回归测试 解释
在产品开发的过程中,都要有测试工作进行支持。有时候产品上线后质量的好坏也取决于测试环节的质量。一、冒烟测试冒烟测试就是完成一个新版本的开发后,对该版本最基本的功能进行测试,保证基本的功能和流程能走通。如果不通过,则打回开发那边重新开发;如果通过测试,才会进行下一步的测试(功能测试,集成测试,系统测试等等)。冒烟测试,是版本验证测试,主要确认新的版本是否存在致命性bug,冒烟测试最大的优点在于节约测试的时间成本,减少测试轮数。二、回归测试回归测试,是软件维护阶段对软件修改后进行的测试,指修改了旧代
2022-05-20 10:43:00 1004
原创 野生产品经理:字段设计
无论是前台还是后台产品,在设计界面或者业务流程的时候,都会涉及到字段的设计。针对需要填写的字段的设计需要注意以下几点:字段名称必填性质: (是否必填?)输入方式:手动输入/下拉框选择/自动生成/多级联动选择/其他手动输入方式:输入格式、字数要求、输入值的范围。(是否 需要对输入值正确性进行校验判断,例如,身份证号的输入)。下拉框选择方式:单选、多选还是列表选择。自动生成:根据登录账户权限,进行自动生成。字段提醒:在填写框内,用灰色字体作为提醒;或者在字段旁边弹出窗口进行说明。
2022-05-07 15:29:33 616
原创 np.random.rand()、np.random.randint()与 np.random.random()的区别和用法
当使用numpy中random去产生随机数的时候,会发现这三个函数很相似。那么它们之间有什么区别呢?1. np.random.random()返回半开放区间[0.0,1.0]中的随机浮点。与np.random.rand()作用一样,只是参数不同而已。random.random(size=None)Return random floats in the half-open interval [0.0, 1.0). Alias for random_sample to ease forward-p
2022-04-16 16:55:53 3904
原创 matplotlib:绘制辅助线(axvline、axhline)
如何在子图中画出辅助线horizontal 水平,画水平线。linestyle 线条的类型。c 代表线条的颜色。ax1.axhline(0.95,linestyle='--',c='grey')vertical 垂直,画垂直线。 ax1.axvline(minInd95,linestyle='--',c='grey')例:#累计分布fig,ax1 = plt.subplots()ax1.plot(NewGrouped['R'],NewGrouped['cumPer'])#这里为何不
2022-03-23 21:21:36 5285
原创 Pandas: pd.reset_index(drop=False)的用法
pd.reset_index()的作用:用来重新设置索引index。pd.reset_index(drop=False),False 表示不删除之前的index。pd.reset_index(drop=True),True表示删除之前的index。
2022-03-23 16:47:36 4377
原创 datetime.strptime()
由字符串格式转化为日期格式的函数为: datetime.datetime.strptime()由日期格式转化为字符串格式的函数为: datetime.datetime.strftime()datetime.strptime() 类方法可根据一个表示时间的字符串和对应的格式字符串创建来一个 datetime 对象。对于 datetime.strptime() 类方法,默认值为 1900-01-01T00:00:00.000: 任何未在格式字符串中指定的部分都将从默认值中提取。指令含义示例
2022-03-22 16:07:58 15320
原创 import os 的用法
os 操作系统借口模块。os.path 模块主要用于获取文件的属性。os.path.abspath(path) 返回绝对路径import ospath = os.path.abspath("..") #返回绝对路径path1 = path+"\\data\\OrderData.csv"import os print( os.path.basename('/root/runoob.txt') ) # 返回文件名print( os.path.dirname('/root/runoob.
2022-03-22 12:49:46 3205
原创 UUID 是什么
UUID 定义UUID是国际标准化组织(ISO)提出的一个概念。UUID是一个128比特的数值,这个数值可以通过一定的算法计算出来。为了提高效率,常用的UUID可缩短至16位。UUID用来识别属性类型,在所有空间和时间上被视为唯一的标识。一般来说,可以保证这个值是真正唯一的任何地方产生的任意一个UUID都不会有相同的值。使用UUID的一个好处是可以为新的服务创建新的标识符。这样一来,客户端在查找一个服务时,只需要在它的服务查找请求中指出与某类服务(或某个特定服务)有关的UUID,如果服务的提供者能将可用的
2022-02-11 11:07:46 1131
原创 Numpy:.astype() 、 .dtype() 与 type()
type() 查看数据类型.astype() 转换数据类型.dtype() 查看数组的数据类型
2022-01-17 09:10:54 534
原创 Pandas:波浪号“~”在 pandas 中的用法
“~ ”在pands中表示否定的意思。In[1]:s = pd.Series(range(-3, 4))Out[1]: s0 -31 -22 -13 04 15 26 3In[2]:s[~(s < 0)]Out[2]: 3 04 15 26 3dtype: int64其它:| for or, & for and参考:Boolean Indexing,https://pandas.pydata
2022-01-09 19:54:47 4363
原创 Note:TCP/IP的四元组、五元组、七元组
概念记忆四元组:源IP地址、目的IP地址、源端口、目的端口;五元组:源IP地址、目的IP地址、协议号、源端口、目的端口;七元组:源IP地址、目的IP地址、协议号、源端口、目的端口,服务类型以及接口索引....
2021-12-30 10:19:59 1224
原创 关系数据库范式及1NF、2NF、3NF和BCNF
关系规范化技术涉及一系列规则,实施这些规则,可以确保关系数据库被规范到相应程度。规范化范式(Normal Forma,NF)是关系表符合特定规范化程度的模式。规范化范式的种类与函数依赖有着直接的联系。关系规范化技术涉及一系列规则,实施这些规则,可以确保关系数据库被规范到相应程度。规范化范式(Normal Forma,NF)是关系表符合特定规范化程度的模式。规范化范式的种类与函数依赖有着直接的联系。在关系中存在函数依赖时就有可能存在数据冗余,引出数据操作异常现象。数据冗余不仅浪费存储空间,而且会使数据库难以
2021-12-25 14:53:51 2699
原创 Pandas:axis=1与axis=0
当使用pandas进行行列计算时,经常会搞混axis=1,与axis=0的区别。具体可以参考下图,简单可以记忆为,axis=1 为跨列进行计算,也就是说列们进行捆绑,然后进行计算。例如,df.sum(axis=1),即求的是co1到co4的列值合。(“1”长得就想一列,故形象记忆等于1时,就是跨列)同理,axis=0就是跨行计算。计算方向为将所有行捆绑起来进行求和或者求平均等计算。图来自网络,侵删,...
2021-12-22 14:56:19 1050
原创 pandas:DataFrame列重新命名
1.从文件读取的时候,直接重新命名. pd.read_excel(names=[,])test1 =pd.read_excel("assets/Energy Indicators.xls",header=None,skiprows=18,usecols=[2,3,4,5],na_value=['...'],names=['Country', 'Energy Supply', 'Energy Supply per Capita', '% Renewable'])2.在原有的DataFrame上重新命名。
2021-12-15 21:01:29 6916
原创 pandas:str.replace() 文本清理
str.replace()可以一次处理一整个Series。str.replace()的正式形式为 Series.str.replace(pat, repl) ,其中pat为想要寻找的模式,一般为正则表达式,repl为要替换进去的字符串或函数。pd.str.replace(r"city\s+7", "city")...
2021-12-15 14:25:39 1402
原创 Excel Note 001-多条件计数,多条件求和,双条件矩阵求值
VLOOKUPCOUNTIFS,多条件计数解释:将条件应用于跨多个区域的单元格,并计算符合所有条件的次数公式写法:=COUNTIFS(criteria_range1, criteria1, [criteria_range2, criteria2],…)SUMIFS,多条件求和示例:(1)统计“小米 A3”手机销售额(条件1:小米,条件2:A3)。其中A列是产品名称且含有“小米”,B列是产品型号其中包含“A3",C列是销售额。(2)可以使用 SUMIFS 计算一个国家/地区内 (1..
2021-11-24 15:24:00 1510
原创 Python字符串前面加‘u’的作用
作用: u后面字符串以Unicode格式进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时出现乱码。data_ori = pd.read_csv('./heros7.csv', encoding = 'gb18030')features = [u'最大生命',u'生命成长',u'初始生命',u'最大法力', u'法力成长',u'初始法力',u'最高物攻',u'物攻成长' ]...
2021-11-11 13:39:59 3141
原创 pandas 删除重复值
drop_duplicates(subset,keep,inplace,ignore_index)DataFrame.drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False)subset:列的标签,或者传入一个标签列表,subset=[‘a’,‘b’]这种,只有指定列都重复的时候才会删除。keep:选择需要保留的重复值,有三个选项, - first:保留第一次出现的行; - last:保留最后一次出
2021-09-27 09:55:35 6114
原创 matplotlib图表中中文标签不显示问题
在代码行中,加入即可#用来正常显示中文标签plt.rcParams['font.sans-serif']=['SimHei']例如下图,标黄色位置之前为[]的部分,添加以上代码后,显示出中文来。
2021-09-21 21:49:04 391
原创 K-means笔记
K-means算法算法过程:从N个样本数据中随机选取K个对象作为初始的聚类中心。分别计算每个样本到这各个聚类中心的距离,并将对象归于距离最短的聚类群中。所有样本计算完后,重新计算K个聚类中心。与前一次计算得到得聚类中心比较。如果聚类中心没有改变,则进行步骤5。若聚类中心改变了,则重复步骤2.当质心不发生变化时停止输出聚类结果。对于连续数据,聚类中心取该簇的均值。对于分类变量,均值可能无定义,可以使用K-众数方法。...
2021-08-23 16:08:48 133
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人