ML算法学习
机器学习常用的算法的学习及推导过程
__tian__
我走过的路,每一步都算数
展开
-
数据归一化
数据归一化:将所有数据映射到0~1之间X=(X-min(X)) / (max(X)-min(X)) 适用于有数据分布有明显边界的情况 ,如考试分数(0~100)均值方差归一化 :把所有数据归一到均值为0方差为1 的分布中X=(X-mean(X) ) / std(X) #均值归一化:import numpy as npx=np.random.randint...原创 2018-07-26 09:48:34 · 2749 阅读 · 0 评论 -
简单操作sklearn中内置数据
import matplotlibfrom sklearn.model_selection import train_test_splitfrom sklearn import datasetsdig=datasets.load_digits()#读入sklearn内置数据 print(dig.keys())X=dig.datay=dig.targetX,y这段代码载入digh...原创 2018-07-25 15:40:45 · 1380 阅读 · 0 评论 -
使用sklearn中的方法进行数据划分
train_test_split的参数test_size : float, int, None, optional If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents ...原创 2018-07-25 08:38:14 · 1606 阅读 · 0 评论