自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 资源 (11)
  • 收藏
  • 关注

转载 是什么系列之Avro

今天来关注一下Avro,目的是想接触一下跨端RPC中间件中关于数据编解码及传输的相关技术,这和我目前负责的项目很有关系!那么先从网上找一些相关的文献来给自己科普一下~ Avro是Hadoop的一个子项目,也是Apache中的一个独立项目,它是一个基于二进制数据传输高性能的中间件。在Hadoop的其他项目中(Hbase,Hive)的客户端与服务端的数据传输中被大量采用。听上去很给力

2014-07-25 17:17:29 801

Hive编程指南

要把关系型数据库应用迁移到Hadoop上,你该何去何从?本书介绍了Apache Hive,它是基于Hadoop的数据仓库架构。通过本书,读者可以很快学会如何使用Hive的SQL方言——HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大型数据集。 本书以实际案例为主线,详细介绍如何在用户环境下安装和配置Hive,并对Hadoop和MapReduce的各项技术进行概要介绍,同时演示Hive在Hadoop生态系统中是如何工作的。在本书中,读者还可以看到众多的实际使用场景,包括企业如何使用Hive解决了涉及PB级数据的问题。 · 使用Hive创建、修改和删除数据库、表、视图、函数和索引。 · 从文件到外部数据库,自定义数据存储格式和存储选项。 · 将数据载入表中以及从表中抽取数据,并使用查询、分组、过滤、连接和其他常规查询方法。 · 获得创建用户自定义函数(UDF)的最佳方法。 · 了解应该使用的Hive模式以及应该避免的反模式。 · 将Hive和其他数据处理程序进行整合。 · 对于NoSQL数据库和其他数据存储使用存储控制器。 · 学习在亚马逊弹性MapReduce上执行Hive的正反两方面信息。

2014-10-10

Amazon EMR开发人员指南中文版

Amazon EMR开发人员指南中文版,用来说明EMR开发方法、EMR用途

2014-08-13

Pro Hadoop

Hadoop是一个用于运行应用程序在大型集群的廉价硬件设备上的框架。Hadoop为应用程序透明的提供了一组稳定/可靠的接口和数据运动。在Hadoop中实现了Google的MapReduce算法,它能够把应用程序分割成许多很小的工作单元,每个单元可以在任何集群节点上执行或重复执行。此外,Hadoop还提供一个分布式文件系统用来在各个计算节点上存储数据,并提供了对数据读写的高吞吐率

2014-08-06

hive编程指南中文版

要把关系型数据库应用迁移到Hadoop上,你该何去何从?本书介绍了Apache Hive,它是基于Hadoop的数据仓库架构。通过本书,读者可以很快学会如何使用Hive的SQL方言——HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大型数据集。 本书以实际案例为主线,详细介绍如何在用户环境下安装和配置Hive,并对Hadoop和MapReduce的各项技术进行概要介绍,同时演示Hive在Hadoop生态系统中是如何工作的。在本书中,读者还可以看到众多的实际使用场景,包括企业如何使用Hive解决了涉及PB级数据的问题。 · 使用Hive创建、修改和删除数据库、表、视图、函数和索引。 · 从文件到外部数据库,自定义数据存储格式和存储选项。 · 将数据载入表中以及从表中抽取数据,并使用查询、分组、过滤、连接和其他常规查询方法。 · 获得创建用户自定义函数(UDF)的最佳方法。 · 了解应该使用的Hive模式以及应该避免的反模式。 · 将Hive和其他数据处理程序进行整合。 · 对于NoSQL数据库和其他数据存储使用存储控制器。 · 学习在亚马逊弹性MapReduce上执行Hive的正反两方面信息。

2014-07-30

网络扫描工具nmap

nmap 最实用的网络扫描软件 可以进行各类的端口探测,内网扫描,

2014-07-30

《Hadoop实战》例子源码

《Hadoop实战》作为云计算所青睐的分布式架构,Hadoop是一个用Java语言实现的软件框架,在由大量计算机组成的集群中运行海量数据的分布式计算,是谷歌实现云计算的重要基石。《Hadoop实战》分为3个部分,深入浅出地介绍了Hadoop框架、编写和运行Hadoop数据处理程序所需的实践技能及Hadoop之外更大的生态系统。

2014-07-25

Hadoop/HDFS/MapReduce/HBase

对Hadoop中的HDFS、MapReduce、Hbase系列知识的介绍。如果想初略了解Hadoop 可下载观看

2014-07-22

《HBase实战》

《HBase实战》是一本基于经验提炼而成的指南,它教给读者如何运用HBase设计、搭建及运行大数据应用系统。全书共分为4个部分。前两个部分分别介绍了分布式系统和大规模数据处理的发展历史,讲解HBase的基本原理模式设计以及如何使用HBase的高级特性;第三部分通过真实的应用和代码示例以及支持这些实践技巧的理论知识,进一步探索HBase的一些实用技术;第四部分讲解如何把原型开发系统升级为羽翼丰满的生产系统。 《HBase实战》适合所有对云计算、大数据处理技术和NoSQL数据库感兴趣的技术人员阅读,尤其适合对Hadoop及HBase感兴趣的技术人员参考。阅读《HBase实战》不要求之前具备HBase、Hadoop或者MapReduce方面的知识。

2014-07-22

HBase权威指南中文版

《HBase权威指南》探讨了如何通过使用与HBase高度集成的Hadoop将HBase的可伸缩性变得简单;把大型数据集分布到相对廉价的商业服务器集群中;使用本地Java客户端,或者通过提供了REST、Avro和Thrift应用编程接口的网关服务器来访问HBase;了解HBase架构的细节,包括存储格式、预写日志、后台进程等;在HBase中集成MapReduce框架;了解如何调节集群、设计模式、拷贝表、导入批量数据和删除节点等。 《HBase权威指南》适合使用HBase进行数据库开发的高级数据库研发人员阅读。

2014-07-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除