NOIP2014提高组复赛解题报告

这篇博客是作者关于2014年全国青少年信息学奥林匹克联赛(NOIP)提高组复赛的解题报告。文章详细分析了三道题目,包括树形DP、直译式DP的优化以及解方程的策略。作者提到在T3题中,通过引理优化暴力解法,将时间复杂度降低到O(n*p+n*n*m/p)。同时,作者指出利用hash对暴力解法进行优化,通过模小质数来排除部分无效解。
摘要由CSDN通过智能技术生成

Day1

T1生活大爆炸版剪刀石头布:模拟,水;

T2联合权值:树形DP,水;

T3Flappy Birds:

这道题我当时算时间复杂度算错了,O(nm^2)的时间复杂度给算成O(nm)了,所以根本就没想优化,以后①算时间复杂度的时候要小心一点了

其实正解也是很简单的,只是在直译式DP的基础上做了一点小优化。

直译式DP:设f(i,j)为到达当前点的最小步数,则

f(i,j)->f(i-1,j+Y[i-1])

      ->f(i-1,j-k*X[i-1])+k,k>0且j-k*X[i-1]>0

完全背包式优化:

f(i,j)->f(i-1,j-X[i-1])+1

      ->f(i,j-X[i-1])+1

      ->f(i-1,j+Y[i-1])

(顺序不能颠倒)

“因为f(i,j)这个状态实际上可以由f(i,j-X[i-1])这个状态转移而来"——GTY     orz

②这种多步与一步等价的思想实际上是非常实用和需要我掌握的。

回来以后写的AC代码:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值