数论四大定理(欧拉定理、费马小定理、中国剩余定理、威尔逊定理)

本文介绍了数论中的四大定理:欧拉定理、费马小定理、中国剩余定理和威尔逊定理,以及它们在解决数学问题中的应用。通过实例解析了如何利用这些定理进行同余运算,包括在斐波那契数列模运算和生物节律计算中的应用。同时,提供了对应的解题思路和代码实现。
摘要由CSDN通过智能技术生成

前置知识

同余

假设 a , b a,b a,b 都是整数,如果 n n n 是一个正整数,且存在整数 k k k 使得 a − b = k × n a−b=k \times n ab=k×n,则称 a , b a,b a,b n n n 同余,记作 a ≡ b ( m o d n ) a \equiv b \pmod {n} ab(modn)

逆元

a ⋅ a − 1 ≡ 1 m o d    p a \cdot a^{−1} \equiv1 \mod p aa11modp,其中 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1 。也就是说 a a a p p p 互质, a − 1 a^{-1} a1 就是逆元。

数论四大定理

  • 欧拉定理

  • 费马小定理

  • 中国剩余定理

  • 威尔逊定理

欧拉定理

对任意两个正整数 a , n a, n a,n,如果两者互质,那么 a φ ( n ) ≡ 1   ( m o d n ) a^{\varphi (n)} ≡ 1 \space \pmod{n} aφ(n)1 (modn)

其中欧拉函数通式: φ ( n ) = n × ( 1 − 1 p 1 ) × ( 1 − 1 p 2 ) × ( 1 − 1 p 3 ) × ( 1 − 1 p 4 ) × ⋯ × ( 1 − 1 p n ) φ(n)=n \times (1-\dfrac{1}{p_1}) \times (1-\dfrac{1}{p_2}) \times (1-\dfrac{1}{p_3}) \times (1-\dfrac{1}{p_4}) \times \cdots \times (1-\dfrac{1}{p_n}) φ(n)=n×(1p11)×(1p21)×(1p31)×(1p41)××(1pn1)

p p p n n n 的质因数, n n n 是不为 0 0 0 的正整数, φ ( 1 ) = 1 \varphi(1)=1 φ(1)=1

质数的 φ \varphi φ 为自己减 1 1 1,例如 φ ( 2 ) = 1 \varphi(2)=1 φ(2)=1

费马小定理

若存在整数 a , p a,p

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值