本文收录于机器学习前置教程系列。
本文列出了常用的机器学习数学符号(Mathematical notations),包含代数、微积分、线性代数、概率论、集合论、统计学以及希腊字母。
代数
符号 | 名称 | 描述 | 例子 |
---|---|---|---|
(f∘g) | 复合函数 | 嵌套函数 | (f∘g)(x)=f(g(x)) |
∆ | 德耳塔 | 变化/区别 | ∆x=x_1-x_0 |
e | 欧拉数 | e=2.718281828 | $ s= \frac{1}{1+e^{-z}}$ |
∑ | 求和 | 求和 | ∑x_i=x_1+x_2+x_3 |
∏ | 大写派 | 所有数的乘积 | ∏x_i=x_1∙x_2∙x_3 |
ϵ | 艾普西隆 | 0附近的小数 | lr=1e-4 |
微积分
符号 | 名称 | 描述 | 例子 |
---|---|---|---|
x′ | 一阶导数 | 一阶导数 | (x^2)′ =2x |
x″ | 二阶导数 | 二阶导数 | (x^2)″ =2 |
lim | 极限 | x接近0时的函数值 | |
∇ | nabla | 梯度 | ∇f(a,b,c) |
线性代数
符号 | 名称 | 描述 | 例子 |
---|---|---|---|
[ ] | 方括号 | 矩阵或向量 | M=[135] |
⋅ | 点 | 点积 | Z=X⋅W |
⊙ | 哈达马 | 哈达马乘积 | A=B⊙C |
X T X^T X |