摘自http://www.cnblogs.com/zabery/archive/2011/07/26/2117103.html
前言
记得在学习数据结构的时候一味的想用代码实现算法,重视的是写出来的代码有一个正确的输入,然后有一个正确的输出,那么就很满足了。从网上看了许多 的代码,看了之后貌似懂了,自己写完之后也正确了,但是不久之后就忘了,因为大脑在回忆的时候,只依稀记得代码中的部分,那么的模糊,根本不能再次写出正 确的代码,也许在第一次写的时候是因为参考了别人的代码,看过之后大脑可以进行短暂的高清晰记忆,于是欺骗了我,以为自己写出来的,满足了成就感。可是代 码是计算机识别的,而我们更喜欢文字,图像。所以我们在学习算法的时候要注重算法的原理以及算法的分析,用文字,图像表达出来,然后当需要用的时候再将文 字转换为代码。记忆分为三个步骤:编码,存储和检索,就以学习为例,先理解知识,再归纳知识,最后巩固知识,为了以后的应用而方便检索知识。
堆排序过程
堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
既然是堆排序,自然需要先建立一个堆,而建堆的核心内容是调整堆,使二叉树满足堆的定义(每个节点的值都不大于其父节点的值)。调堆的过程应该从最后一个非叶子节点开 始,假设有数组A = {1, 3, 4, 5, 7, 2, 6, 8, 0}。那么调堆的过程如下图,数组下标从0开始,A[3] = 5开始。分别与左孩子和右孩子比较大小,如果A[3]最大,则不用调整,否则和孩子中的值最大的一个交换位置,在图1中是A[7] > A[3] > A[8],所以A[3]与A[7]对换,从图1.1转到图1.2。
所以建堆的过程就是
1: for ( i = headLen/2; i >= 0; i++)
2:
3: do AdjustHeap(A, heapLen, i)
调堆:如果初始数组是非降序排序,那么就不需要调堆,直接就满足堆的定义,此为最好情况,运行时间为Θ(1);如果初始数组是如图1.5,只有 A[0] = 1不满足堆的定义,经过与子节点的比较调整到图1.6,但是图1.6仍然不满足堆的定义,所以要递归调整,一直到满足堆的定义或者到堆底为止。如果递归调 堆到堆底才结束,那么是最坏情况,运行时间为O(h) (h为需要调整的节点的高度,堆底高度为0,堆顶高度为floor(logn) )。
建堆完成之后,堆如图1.7是个大根堆。将A[0] = 8 与 A[heapLen-1]交换,然后heapLen减一,如图2.1,然后AdjustHeap(A, heapLen-1, 0),如图2.2。如此交换堆的第一个元
素和堆的最后一个元素,然后堆的大小heapLen减一,对堆的大小为heapLen的堆进行调堆,如此循环,直到heapLen == 1时停止,最后得出结果如图3。
1: /*
2: 输入:数组A,堆的长度hLen,以及需要调整的节点i
3: 功能:调堆
4: */
5:
6: void AdjustHeap(int A[], int hLen, int i)
7: {
8: int left = LeftChild(i); //节点i的左孩子
9: int right = RightChild(i); //节点i的右孩子节点
10: int largest = i;
11: int temp;
12:
13: while(left < hLen || right < hLen)
14: {
15: if (left < hLen && A[largest] < A[left])
16: {
17: largest = left;
18: }
19:
20: if (right < hLen && A[largest] < A[right])
21: {
22: largest = right;
23: }
24:
25: if (i != largest) //如果最大值不是父节点
26: {
27: temp = A[largest]; //交换父节点和和拥有最大值的子节点交换
28: A[largest] = A[i];
29: A[i] = temp;
30:
31: i = largest; //新的父节点,以备迭代调堆
32: left = LeftChild(i); //新的子节点
33: right = RightChild(i);
34: }
35: else
36: {
37: break;
38: }
39: }
40: }
41:
42: /*
43: 输入:数组A,堆的大小hLen
44: 功能:建堆
45: */
46: void BuildHeap(int A[], int hLen)
47: {
48: int i;
49: int begin = hLen/2 - 1; //最后一个非叶子节点
50: for (i = begin; i >= 0; i--)
51: {
52: AdjustHeap(A, hLen, i);
53: }
54: }
55:
56: /*
57: 输入:数组A,待排序数组的大小aLen
58: 功能:堆排序
59: */
60: void HeapSort(int A[], int aLen)
61: {
62: int hLen = aLen;
63: int temp;
64:
65: BuildHeap(A, hLen); //建堆
66:
67: while (hLen > 1)
68: {
69: temp = A[hLen-1]; //交换堆的第一个元素和堆的最后一个元素
70: A[hLen-1] = A[0];
71: A[0] = temp;
72: hLen--; //堆的大小减一
73: AdjustHeap(A, hLen, 0); //调堆
74: }
75: }
性能分析
- 调堆:上面已经分析了,调堆的运行时间为O(h)。
- 建堆:每一层最多的节点个数为n1 = ceil(n/(2^(h+1))),
因此,建堆的运行时间是O(n)。
- 循环调堆(代码67-74),因为需要调堆的是堆顶元素,所以运行时间是O(h) = O(floor(logn))。所以循环调堆的运行时间为O(nlogn)。
总运行时间T(n) = O(nlogn) + O(n) = O(nlogn)。对于堆排序的最好情况与最坏情况的运行时间,因为最坏与最好的输入都只是影响建堆的运行时间O(1)或者O(n),而在总体时间中占重 要比例的是循环调堆的过程,即O(nlogn) + O(1) =O(nlogn) + O(n) = O(nlogn)。因此最好或者最坏情况下,堆排序的运行时间都是O(nlogn)。而且堆排序还是原地算法(in-place algorithm)。
从上述过程可知,堆排序其实也是一种选择排序,是一种树形选择排序。只不过直接选择排序中,为了从R[1...n]中选择最大记录,需比较n-1次,然后 从R[1...n-2]中选择最大记录需比较n-2次。事实上这n-2次比较中有很多已经在前面的n-1次比较中已经做过,而树形选择排序恰好利用树形的 特点保存了部分前面的比较结果,因此可以减少比较次数。对于n个关键字序列,最坏情况下每个节点需比较log2(n)次,因此其最坏情况下时间复杂度为 nlogn。堆排序为不稳定排序,不适合记录较少的排序。
参考http://www.cnblogs.com/dolphin0520/archive/2011/10/06/2199741.html