- 博客(21)
- 资源 (8)
- 收藏
- 关注
转载 DevTools开发者工具(chrome谷歌浏览器)
DevTools开发者工具(chrome谷歌浏览器)概述官方文档https://developers.google.com/web/tools/chrome-devtools/ (需科学上网)打开方法:*在Chrome菜单中选择 更多工具 > 开发者工具*在页面元素上右键点击,选择 “检查”*使用 快捷键 Ctrl+Shift+I (Windows) 或 Cmd+Opt+I (Mac)前言:chrome的开发者工具可以说是十分强大了,是web开发者的一大利器,作为我个人而言平时
2021-04-20 10:30:30 472
原创 获取股票历史数据(网易163行情接口)
获取股票历史数据(网易163行情接口)获取股票历史数据,通过网易163接口来获取数据,可以获取指数数据,也可以获取股票数据import pandas as pd #沪市前面加0,深市前面加1,比如0000001,是上证指数,1000001是中国平安def get_daily(code,start='19900101',end=''): url_mod="http://quotes.money.163.com/service/chddata.html?code=%s&start=%s
2020-12-01 23:31:12 7894 1
原创 lgbm和xgboost实现代码
# coding: utf-8# pylint: disable = invalid-name, C0111import lightgbm as lgbimport pandas as pdfrom sklearn.metrics import mean_squared_errorfrom sklearn.model_selection import GridSearchCV# ...
2020-03-20 09:03:41 1022
原创 行人检测_目标检测/识别_人脸识别数据集下载地址
把之前用过的数据库下载进行总结 ,以方便更多的人下载。行人检测相关数据库INRIA数据集下载地址:http://pascal.inrialpes.fr/data/human/Caltech行人数据库下载地址:http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/Crowd_PETS数据集下载地址:http://...
2019-11-12 16:12:39 1030
转载 行人检测数据库(包含9个常见数据库)
到目前为止,行人检测研究除提出了大量的行人检 测方法外,另一个成果是收集了多个行人数据库以供不同 方法进行测试和比较。表 1 列出了目前常用的行人数据 库,下面对每个数据库的特点做简要说明。MIT行人数据库[15]是较早公开的行人数据库,该库包含正面和背面两个视角的彩色行人图像,数据库未划分训练集和测试集,且不包含负样本。该库在 2005 年以前使用较多,因图像背景简单,目前较少被人使用。...
2019-11-12 16:07:37 2588
原创 经典损失函数:交叉熵(附tensorflow)
经典损失函数:交叉熵(附tensorflow)一.什么是交叉熵交叉熵是一个信息论中的概念,它原来是用来估算平均编码长度的。给定两个概率分布p和q,通过q来表示p的交叉熵为:新的改变注意,交叉熵刻画的是两个概率分布之间的距离,或可以说它刻画的是通过概率分布q来表达概率分布p的困难程度,p代表正确答案,q代表的是预测值,交叉熵越小,两个概率的分布约接近。那么,在神经网络中怎样把前向传播得到...
2019-11-08 10:28:43 127
转载 计算机会议排名等级
附件是计算机领域的学术会议等级排名情况,分为A+, A, B, C, L 共5个档次。其中A+属于顶级会议,基本是这个领域全世界大牛们参与和关注最多的会议。国内的研究者能在其中发表论文的话,是很值得骄傲的成就。A类也是非常好的会议了,尤其是一些热门的研究方向,A类的会议投稿多录用率低,部分A类会议影响力逐步逼近A+类会议。B类的会议分两种,一种称为盛会级,参与的人多,发表的论文也多,论文录...
2019-08-19 10:25:09 15715
原创 TF-IDF算法介绍及实现
目录1、TF-IDF算法介绍(1)TF是词频(Term Frequency)(2) IDF是逆向文件频率(Inverse Document Frequency)(3)TF-IDF实际上是:TF * IDF2、TF-IDF应用3、Python3实现TF-IDF算法4、NLTK实现TF-IDF算法5、Sklearn实现TF-IDF算法1、TF-IDF算法介绍...
2019-07-17 18:38:36 1519 1
转载 互联网金融风控模型大全
一、市场调研目前市面主流的风控模型1、互联网金融前10名排行榜(数据截止日期2017-09-12)互联网金融公司排名分别是蚂蚁金服、陆金所、京东金融、苏宁金融、百度金融、腾讯理财通、宜信、钱大掌柜、万达金融和网易理财。1.1 蚂蚁金服1.1.1 大数据技术对接第三方征信公司芝麻信用分,通过用户信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度对海量数据行综合的处理评估,同时也给...
2019-03-05 16:31:18 2238
翻译 十分钟掌握pandas(pandas官方文档翻译)
十分钟掌握pandas文档版本:0.20.3这是一个对pandas简短的介绍,适合新用户。你可以在Cookbook中查看更详细的内容。 通常,我们要像下面一样导入一些包。In [1]: import pandas as pdIn [2]: import numpy as npIn [3]: import matplotlib.pyplot as plt1 2 3...
2019-01-14 17:56:16 326
转载 python数据类型详解
目录1、字符串2、布尔类型3、整数4、浮点数5、数字6、列表7、元组8、字典9、日期1、字符串1.1、如何在Python中使用字符串a、使用单引号(')用单引号括起来表示字符串,例如:str='this is string';print str;b、使用双引号(")双引号中的字符串与单引号中的字符串用法完全相同,例如:str="this is string"...
2018-12-28 17:49:57 175
转载 Lasso Regression
Lasso Regression标签(空格分隔): 监督学习在数据挖掘和机器学习算法的模型建立之初,为了尽量的减少因缺少重要变量而出现的模型偏差问题,我们通常会尽可能的多的选择自变量。但是在实际建模的过程中,通常又需要寻找 对响应变量具有解释能力的自变量子集,以提高模型的解释能力与预测精度,这个过程称为特征选择。还是考虑《线性回归》中的一般线性回归模型y=wTx,使用最小二乘估计(OL
2017-11-17 11:19:23 689
转载 Rsession让Java调用R更简单
Rsession让Java调用R更简单R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。
2017-06-07 14:34:30 457
转载 怎样将Java项目打包成.Jar包
转自:http://hi.baidu.com/qinxuanhui/blog/item/b372e050278b034c1138c2c3.html怎样将Java项目打包成.Jar包总体思路是先打成jar再把jar打成exe。主要看1.3和2.3里的内容就可以了。1.将项目打成jar:1.1 要将项目打包成jar文件,方法很多,可以用Eclipse自带的打包工具A
2017-06-07 14:33:38 699
转载 JAVA调用R语言
JAVA调用R语言from:好代码网,http://www.haodaima.net/art/25227541 简介R是统计计算的强大工具,而Java是做应用系统的主流语言,两者天然具有整合的需要。关于整合,一方面,R中可以创建JAVA对象调用JAVA方法,另一方面,JAVA中可以转换R的数据类型调用R的函数,互相取长补短。现在也有一个项目JGR,用JAVA做R的图形界面,可以实现
2017-06-07 14:32:39 1392
转载 Deep Learning论文笔记之(五)CNN卷积神经网络代码理解
Deep Learning论文笔记之(五)CNN卷积神经网络代码理解 本文的代码来自githup的Deep Learning的toolbox,(在这里,先感谢该toolbox的作者)里面包含了很多Deep Learning方法的代码。是用Matlab编写的(另外,有人翻译成了C++和Python的版本了)。本文中我们主要解读下CNN的代码。详细的注释见代码。 在读代码之前,
2017-06-05 16:21:20 498
原创 深度神经网络(DNN)模型与前向传播算法
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。1. 从感知机到神经网络 在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图: 输出和输入之间学习到一个线性关系,得到中间输出结果:
2017-06-04 00:54:40 2779
原创 深度神经网络(Deep Neural Network, DNN)
线性模型通过特征间的现行组合来表达“结果-特征集合”之间的对应关系。由于线性模型的表达能力有限,在实践中,只能通过增加“特征计算”的复杂度来优化模型。比如,在广告CTR预估应用中,除了“标题长度、描述长度、位次、广告id,cookie“等这样的简单原始特征,还有大量的组合特征(比如”位次-cookie“ 表示用户对位次的偏好)。事实上,现在很多搜索引擎的广告系统用的都是Logistic Regre
2017-06-04 00:28:03 5158
原创 机器学习——随机森林算法及原理
1. 随机森林使用背景1.1 随机森林定义随机森林是一种比较新的机器学习模型。经典的机器学习模型是神经网络,有半个多世纪的历史了。神经网络预测精确,但是计算量很大。上世纪八十年代Breiman等人发明分类树的算法(Breiman et al. 1984),通过反复二分数据进行分类或回归,计算量大大降低。2001年Breiman把分类树组合成随机森林(Breiman 2001a)
2017-06-02 15:39:21 4972
转载 信用评分之七--逻辑回归中的虚拟变量设置
虚拟变量定义 在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。例如需要考虑性别、民族、不同历史时期、季节差异、企业所有制性质不同等因素的影响。这些因素也应该包括在模型中。 由于定性变量通常表示的是某种特征的有和无,所以量化方法可采用取值为1或0。这种变量称作虚拟变量,用D表示。虚拟变量应用于模型中,对其回归系数的估计与检验方法与定量变量相同。虚拟变
2017-05-09 22:12:12 5648
转载 信用评分之二--信用评分中的评分卡中的A卡、B卡和C卡
A卡(Application score card)申请评分卡B卡(Behavior score card)行为评分卡C卡(Collection score card)催收评分卡评分机制的区别在于:1.使用的时间不同。分别侧重贷前、贷中、贷后;2.数据要求不同。A卡一般可做贷款0-1年的信用分析,B卡则是在申请人有了一定行为后,有了较大数据进行的分析,一般为3-5年,C
2017-05-09 22:08:22 3989 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人