Subspace Clustering 学习----稀疏子空间聚类(SSC)
子空间聚类算法概述
现实世界中,大部分应用场景所需要用到的数据都不会是独立出来的某一类数据,而是多类数据集的混合。如果直接对混合数据进行处理,一是训练后所得的结果不理想,二是所需要的计算时间开销很大。因此,在对数据进行训练之前,先对原数据集进行预处理,将原数据集看成多个数据类的混合数据,每个数据类都是一个subspace。如果能使用一些方法将联合数据集中的data points分类到具体的所属子空间中去,再对自空间进行训练,会大大提高效率。现行存在的subspace clustering算法可以分成4类:
原创
2021-10-12 20:29:54 ·
6524 阅读 ·
0 评论