13.1.2 蓝桥杯图论高阶应用(网络图)之二分图最大匹配
在图论的领域内,二分图最大匹配问题是一个经典而又重要的问题,它在许多实际应用场景中有着广泛的应用,从网络流问题到任务分配,再到稳定婚姻问题等。本篇博客将对二分图最大匹配的概念进行简介,探讨其算法原理,并通过一个经典例题来展示如何应用这一理论解决问题。
算法概述
二分图最大匹配是指在一个二分图中,找到边数最多的匹配,使得这些边没有公共的顶点。简单来说,就是尽可能多地配对,而每个顶点最多只能参与一对配对。
问题引入
在现实生活中,二分图最大匹配问题可以被描述为如下场景:假设有一群人和一系列任务,每个人对应能够完成特定的任务。现在的目标是分配任务给这些人,使得完成的任务数量最多,同时保证每个人最多只能负责一个任务,每个任务也最多只能被一个人负责。
算法分析
求解二分图最大匹配的经典算法有很多,其中最为著名的是匈牙利算法。
匈牙利算法
匈牙利算法是一种在多项式时间内求解二分图最大匹配的算法。它的基本思想是通过寻找增广路径来增加匹配的数量。增广路径是指一条从未匹