4.2 组合逻辑电路的分析方法
所谓分析一个给定的组合逻辑电路,就是要通过分析找出电路的逻辑功能。通常采用的分析方法是从电路的输入到输出逐级写出逻辑函数式,最后得到表示输出与输入关系的逻辑函数式。然后用公式化简法或卡诺图化简法将得到的函数式化简或变换,以使逻辑关系简单明了。为了使电路的逻辑功能更加直观,有时还可以将逻辑函数式转换为真值表的形式。
例4.2.1 试分析图4.2.1所示电路的逻辑功能,指出该电路的用途
根据给出的逻辑图可写出 𝑌2Y2、 𝑌1Y1 和 𝑌0Y0 与 𝐷D、 𝐶C、 𝐵B、 𝐴A 之间关系的逻辑式:
𝑌2=𝐷⋅𝐶⋅𝐵‾⋅𝐴‾+𝐷⋅𝐶‾⋅𝐵⋅𝐴‾+𝐷‾⋅𝐶⋅𝐵⋅𝐴Y2=D⋅C⋅B⋅A+D⋅C⋅B⋅A+D⋅C⋅B⋅A
𝑌1=𝐷‾⋅𝐶‾⋅𝐵⋅𝐴+𝐷‾⋅𝐶⋅𝐵‾⋅𝐴+𝐷⋅𝐶⋅𝐵‾⋅𝐴Y1=D⋅C⋅B⋅A+D⋅C⋅B⋅A+D⋅C⋅B⋅A
𝑌0=𝐴‾⋅𝐵‾⋅𝐶‾⋅𝐷‾+𝐴⋅𝐵‾⋅𝐶‾⋅𝐷‾+𝐴‾⋅𝐵⋅𝐶‾⋅𝐷‾+𝐴‾⋅𝐵‾⋅𝐶⋅𝐷‾Y0=A⋅B⋅C⋅D+A⋅B⋅C⋅D+A⋅B⋅C⋅D+A⋅B⋅C⋅D
从上面的逻辑函数式中我们还不能立刻看出这个电路的逻辑功能和用途。为此,还需将式(4.2.1)转换成真值表的形式,得到表4.2.1。
输入 | 输出 |
---|---|
D | C |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 1 |
0 | 1 |
0 | 1 |
0 | 1 |
1 | 0 |
1 | 0 |
1 | 0 |
1 | 0 |
1 | 1 |
1 | 1 |
1 | 1 |
1 | 1 |
由表4.2.1可以看到,当DCBA表示的二进制数小于或等于5时 𝑌0Y0 为1。当这个二进制数在6和10之间时 𝑌1Y1 为1,而当这个二进制数大于或等于11时 𝑌2Y2 为1。因此,这个逻辑电路可以用来判别输入的4位二进制数数值的范围。可见,一旦将电路的逻辑功能列成真值表,它的功能也就一目了然了。
从电路图也可分析出该电路最重要的动态参数——传输延迟时间。假定每个门电路的传输延迟时间是1t,则整个电路的传输延迟时间是3t。
4.3 组合逻辑电路的基本设计方法
组合逻辑电路的设计一般包括以下步骤:
- 确定电路功能: 明确电路的输入、输出以及功能要求。
- 列出真值表: 根据功能要求列出输入输出对应的真值表。
- 求解逻辑表达式: 从真值表中提取逻辑表达式。
- 化简逻辑表达式: 使用卡诺图或布尔代数对逻辑表达式进行化简。
- 绘制逻辑图: 根据化简后的逻辑表达式绘制逻辑电路图。
通过以上步骤,可以系统地设计组合逻辑电路。