8.13.6 ACM-ICPC 多项式与生成函数 多项式牛顿迭代

8.13.6 ACM-ICPC 多项式与生成函数 多项式牛顿迭代

多项式牛顿迭代是数值分析中的一种有效技术,广泛应用于计算代数或超越方程的根。这种方法特别适合于求解形如 g(f(x))≡0(modxn)g(f(x)) \equiv 0 \pmod{x^n}g(f(x))≡0(modxn) 的多项式方程,其中 f(x)f(x)f(x) 是未知的多项式函数。本节将详细介绍多项式牛顿迭代的原理和应用。

牛顿迭代法基础

牛顿迭代法利用泰勒展开和线性近似来快速逼近方程的根。具体来说,如果你已知方程 g(f(x))=0g(f(x)) = 0g(f(x))=0 的一个近似解 f0(x)f_0(x)f0​(x),你可以通过下面的迭代公式来改进这个解:

这里 g′(f0(x))g'(f_0(x))g′(f0​(x)) 是 ggg 在 f0(x)f_0(x)f0​(x) 处的导数。该方法的核心在于通过迭代逐步减少 g(f(x))g(f(x))g(f(x)) 的值,从而更接近真实的根。

多项式求解实例

多项式求逆

假设你需要求解 f(x)f(x)f(x) 使得 1f(x)−h(x)≡0(modxn)\frac{1}{f(x)} - h(x) \equiv 0 \pmod{x^n}f(x)1​−h(x)≡0(modxn),其中 h(x)h(x)h(x) 是已知的多项式。应用牛顿迭代方法,你可以从一个初始近似 f0(x)f_0(x)f0​(x) 开始,迭代更新 f(x)f(x)f(x):

多项式开方

如果需要求 f(x)f(x)f(x) 使得 f2(x)−h(x)≡0(modxn)f^2(x) - h(x) \equiv 0 \pmod{x^n}f2(x)−h(x)≡0(modxn),迭代公式变为:

多项式指数函数

对于求 f(x)f(x)f(x) 使得 ln⁡(f(x))−h(x)≡0(modxn)\ln(f(x)) - h(x) \equiv 0 \pmod{x^n}ln(f(x))−h(x)≡0(modxn),迭代更新为:

时间复杂度

多项式牛顿迭代的时间复杂度通常是 O(nlog⁡n)O(n \log n)O(nlogn),因为每次迭代包含对多项式进行一次除法和一次乘法运算,而这些操作可以通过快速傅里叶变换(FFT)高效完成。

结论

多项式牛顿迭代是一种强大的数值方法,能够有效解决复杂的多项式方程问题。通过合理选择初始近似值并适当地应用迭代公式,可以在多项式环境中高效地找到方程的解。这种方法在算法竞赛和科研中有着广泛的应用,特别是在处理涉及大规模多项式计算的问题时。

希望本节内容能帮助你更好地理解和掌握多项式牛顿迭代的技术和应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值