Day26 - 集合 - 2.Stream流

2.Stream流

2.1体验Stream流【理解】

  • 案例需求

    按照下面的要求完成集合的创建和遍历

    • 创建一个集合,存储多个字符串元素

    • 把集合中所有以"张"开头的元素存储到一个新的集合

    • 把"张"开头的集合中的长度为3的元素存储到一个新的集合

    • 遍历上一步得到的集合

  • 原始方式示例代码

    public class MyStream1 {
        public static void main(String[] args) {
            //集合的批量添加
            ArrayList<String> list1 = new ArrayList<>(List.of("张三丰","张无忌","张翠山","王二麻子","张良","谢广坤"));
            //list.add()
    ​
            //遍历list1把以张开头的元素添加到list2中。
            ArrayList<String> list2 = new ArrayList<>();
            for (String s : list1) {
                if(s.startsWith("张")){
                    list2.add(s);
                }
            }
            //遍历list2集合,把其中长度为3的元素,再添加到list3中。
            ArrayList<String> list3 = new ArrayList<>();
            for (String s : list2) {
                if(s.length() == 3){
                    list3.add(s);
                }
            }
            for (String s : list3) {
                System.out.println(s);
            }      
        }
    }

  • 使用Stream流示例代码

    public class StreamDemo {
        public static void main(String[] args) {
            //集合的批量添加
            ArrayList<String> list1 = new ArrayList<>(List.of("张三丰","张无忌","张翠山","王二麻子","张良","谢广坤"));
    ​
            //Stream流
            list1.stream().filter(s->s.startsWith("张"))
                    .filter(s->s.length() == 3)
                    .forEach(s-> System.out.println(s));
        }
    }

  • Stream流的好处

    • 直接阅读代码的字面意思即可完美展示无关逻辑方式的语义:获取流、过滤姓张、过滤长度为3、逐一打印

    • Stream流把真正的函数式编程风格引入到Java中

    • 代码简洁

理论理解:
Stream流是Java 8 引入的新特性,旨在简化集合操作,让数据处理更像“声明式流水线”。核心优势是:

  • 链式调用:多个处理步骤可以无缝连接,极大简化代码结构。

  • 懒执行机制:中间操作不会立即执行,只有调用终结方法时才触发,避免了不必要的计算。

  • 可读性强:每一步处理逻辑一目了然,告别层层for循环的繁琐。

企业实战理解(BAT、字节、Google、NVIDIA、OpenAI):

  • 字节跳动: 推荐系统中用Stream处理大批量用户行为数据,快速筛选符合条件的推荐内容。

  • 阿里巴巴: 在中台商品服务中,用Stream实现商品数据的分组、过滤、分页等操作,优化代码结构。

  • Google: 内部工具使用Stream流处理批量数据日志,并在MapReduce等分布式场景中结合使用。

  • OpenAI: 在早期接口数据监控时,用Stream高效聚合、过滤模型调用记录。

面试题1:什么是Stream流?它的核心优势是什么?

参考答案:

Stream流是Java 8引入的新特性,主要用于对集合、数组等数据源进行高效、简洁、函数式风格的处理。Stream本质上是一个流水线,支持数据的筛选、转换、聚合等操作,它强调“什么做”而不是“怎么做”,即更偏向声明式编程。

Stream流的核心优势包括:

1️⃣ 简洁优雅的代码风格:支持链式调用,多个操作可以无缝连接,显著减少了for循环和中间变量的使用,使代码更易读、维护成本更低。

2️⃣ 懒加载机制:中间操作(如filter、map)不会立刻执行,只有遇到终结操作(如forEach、count)时才触发执行,这有助于节省资源,提高性能。

3️⃣ 内建并行计算支持:通过parallelStream(),可以简单地启用并行流,从而利用多核CPU的优势进行数据并行处理,极大提高了数据密集型任务的执行效率。

4️⃣ 函数式编程引入:结合Lambda表达式和函数式接口,Stream流使Java真正具备了函数式编程能力,提升了灵活性和表达能力。

大厂实战补充(字节/腾讯/Google):
字节的内容推荐系统广泛使用Stream流来实现数据筛选和分组逻辑,腾讯云在日志处理服务中利用Stream实现大规模数据的管道式处理,而Google在某些内部工具中通过Stream流快速组合MapReduce输入。

 

场景题1:美团外卖骑手任务筛选

题目:

美团外卖后台系统中有一个“骑手任务单”列表,现在你有一个List<RiderTask>集合,里面包含了骑手任务信息。每个任务对象有如下字段:

  • String riderName:骑手姓名

  • String area:送餐区域

  • String orderStatus:订单状态(如“已完成”、“待配送”、“已取消”)

  • double distance:配送距离(单位:公里)

请用Stream流完成以下需求:

1️⃣ 筛选出“张三”所在的所有任务单。
2️⃣ 从中找出配送距离小于5公里的任务。
3️⃣ 提取这些任务的orderStatus,并去重后收集到List<String>中。
4️⃣ 统计满足条件的总任务数量。

参考答案:

List<RiderTask> tasks = ... // 模拟任务列表

// 1. 筛选张三的任务
List<RiderTask> zhangSanTasks = tasks.stream()
    .filter(task -> "张三".equals(task.getRiderName()))
    .collect(Collectors.toList());

// 2. 筛选距离小于5公里的任务
List<RiderTask> shortDistanceTasks = zhangSanTasks.stream()
    .filter(task -> task.getDistance() < 5)
    .collect(Collectors.toList());

// 3. 提取订单状态并去重
List<String> orderStatuses = shortDistanceTasks.stream()
    .map(RiderTask::getOrderStatus)
    .distinct()
    .collect(Collectors.toList());

// 4. 统计总任务数量
long count = shortDistanceTasks.size();

System.out.println("张三的近距离任务状态列表: " + orderStatuses);
System.out.println("总任务数量: " + count);

思路解析:

这道题是典型的“分步式Stream流处理”场景,大厂(如美团)经常这样链式操作:

  • 先筛选骑手名(filter)

  • 再筛选距离条件(再filter)

  • 通过map映射出你想要的字段

  • 用distinct去重

  • 用collect收集结果

  • 用size或count统计

优点是代码一目了然,避免嵌套for循环写法,提高维护性。

 

 

2.2Stream流的常见生成方式【应用】

  • Stream流的思想

  • Stream流的三类方法

    • 获取Stream流

      • 创建一条流水线,并把数据放到流水线上准备进行操作

    • 中间方法

      • 流水线上的操作

      • 一次操作完毕之后,还可以继续进行其他操作

    • 终结方法

      • 一个Stream流只能有一个终结方法

      • 是流水线上的最后一个操作

  • 生成Stream流的方式

    • Collection体系集合

      使用默认方法stream()生成流, default Stream<E> stream()

    • Map体系集合

      把Map转成Set集合,间接的生成流

    • 数组

      通过Arrays中的静态方法stream生成流

    • 同种数据类型的多个数据

      通过Stream接口的静态方法of(T... values)生成流

  • 代码演示

    public class StreamDemo {
        public static void main(String[] args) {
            //Collection体系的集合可以使用默认方法stream()生成流
            List<String> list = new ArrayList<String>();
            Stream<String> listStream = list.stream();
    ​
            Set<String> set = new HashSet<String>();
            Stream<String> setStream = set.stream();
    ​
            //Map体系的集合间接的生成流
            Map<String,Integer> map = new HashMap<String, Integer>();
            Stream<String> keyStream = map.keySet().stream();
            Stream<Integer> valueStream = map.values().stream();
            Stream<Map.Entry<String, Integer>> entryStream = map.entrySet().stream();
    ​
            //数组可以通过Arrays中的静态方法stream生成流
            String[] strArray = {"hello","world","java"};
            Stream<String> strArrayStream = Arrays.stream(strArray);
          
            //同种数据类型的多个数据可以通过Stream接口的静态方法of(T... values)生成流
            Stream<String> strArrayStream2 = Stream.of("hello", "world", "java");
            Stream<Integer> intStream = Stream.of(10, 20, 30);
        }
    }

理论理解:
Stream流来源广泛:集合、数组、甚至单个值序列,都可以轻松生成Stream流。生成后数据进入“流水线”进行一系列操作。

  • Collection接口的默认方法 stream() 是最直接的入口。

  • 数组类则通过Arrays.stream()方法来生成流。

  • Stream.of() 则提供了“单独元素组装成流”的功能。

企业实战理解:

  • 京东: 电商场景中,大批量的商品数据通过List.stream()快速处理。

  • 百度: 日志系统读取多维数组数据,使用Arrays.stream()批量清洗。

  • 亚马逊AWS: 通过Stream.of()动态构造配置参数流,实现灵活的云服务配置加载。

 

面试题2:Stream流有哪些常用生成方式?分别应用在什么场景?

参考答案:

Stream流的生成方式主要分为以下几类:

1️⃣ 集合(Collection)生成流
所有Collection子类(如List、Set)都可以通过stream()方法生成流。这是最常见的生成方式,适用于大多数业务场景。
👉 例子:List<String> list = ...; list.stream();

2️⃣ Map生成流
Map本身没有stream方法,但可以通过其keySet()values()entrySet()方法间接生成流。
👉 例子:Map<String, Integer> map = ...; map.entrySet().stream();

3️⃣ 数组生成流
通过Arrays.stream(数组)生成流,适用于已有数组的数据场景。
👉 例子:String[] arr = ...; Arrays.stream(arr);

4️⃣ Stream.of()生成流
适用于创建少量元素的流,通常用于测试或临时拼装数据。
👉 例子:Stream.of("a", "b", "c");

5️⃣ 无限流生成(了解)
Stream.iterate()Stream.generate()可以生成无限流,适用于特殊算法场景。

大厂实战补充(京东/阿里/OpenAI):
阿里在大促场景中,结合List.stream()处理商品库存;京东用entrySet().stream()聚合订单数据;OpenAI内部数据处理脚本利用Arrays.stream()读取配置数组并动态加载。

 

场景题2:阿里电商订单处理系统

题目:

阿里电商后台有一个List<Order>订单列表,每个订单有如下属性:

  • String orderId

  • String buyerName

  • double totalPrice

  • List<String> productList

要求:

1️⃣ 找出订单金额超过1000元的所有订单ID;
2️⃣ 找到包含“手机”关键词的订单(productList中包含“手机”);
3️⃣ 合并这两类订单的订单ID并去重,放到一个Set中。

参考答案:

List<Order> orders = ... // 模拟订单列表

// 1. 筛选金额超过1000的订单ID
Stream<String> highValueOrderIds = orders.stream()
    .filter(order -> order.getTotalPrice() > 1000)
    .map(Order::getOrderId);

// 2. 筛选包含“手机”的订单ID
Stream<String> phoneOrderIds = orders.stream()
    .filter(order -> order.getProductList().stream().anyMatch(product -> product.contains("手机")))
    .map(Order::getOrderId);

// 3. 合并去重收集到Set
Set<String> finalOrderIds = Stream.concat(highValueOrderIds, phoneOrderIds)
    .collect(Collectors.toSet());

System.out.println("高价值/包含手机的订单ID集合: " + finalOrderIds);

思路解析:

这里的关键点是:

  • 处理嵌套集合(productList)时用到anyMatch

  • 两个流通过Stream.concat拼接

  • 最终用Collectors.toSet()完成去重

在大厂场景(阿里、京东)下,这类问题典型用于处理订单筛选逻辑,比如黑五活动时筛选高消费订单+热门商品组合单。

 

2.3Stream流中间操作方法【应用】

  • 概念

    中间操作的意思是,执行完此方法之后,Stream流依然可以继续执行其他操作

  • 常见方法

    方法名说明
    Stream<T> filter(Predicate predicate)用于对流中的数据进行过滤
    Stream<T> limit(long maxSize)返回此流中的元素组成的流,截取前指定参数个数的数据
    Stream<T> skip(long n)跳过指定参数个数的数据,返回由该流的剩余元素组成的流
    static <T> Stream<T> concat(Stream a, Stream b)合并a和b两个流为一个流
    Stream<T> distinct()返回由该流的不同元素(根据Object.equals(Object) )组成的流
  • filter代码演示

    public class MyStream3 {
        public static void main(String[] args) {
    //        Stream<T> filter(Predicate predicate):过滤
    //        Predicate接口中的方法   boolean test(T t):对给定的参数进行判断,返回一个布尔值
    ​
            ArrayList<String> list = new ArrayList<>();
            list.add("张三丰");
            list.add("张无忌");
            list.add("张翠山");
            list.add("王二麻子");
            list.add("张良");
            list.add("谢广坤");
    ​
            //filter方法获取流中的 每一个数据.
            //而test方法中的s,就依次表示流中的每一个数据.
            //我们只要在test方法中对s进行判断就可以了.
            //如果判断的结果为true,则当前的数据留下
            //如果判断的结果为false,则当前数据就不要.
    //        list.stream().filter(
    //                new Predicate<String>() {
    //                    @Override
    //                    public boolean test(String s) {
    //                        boolean result = s.startsWith("张");
    //                        return result;
    //                    }
    //                }
    //        ).forEach(s-> System.out.println(s));
    ​
            //因为Predicate接口中只有一个抽象方法test
            //所以我们可以使用lambda表达式来简化
    //        list.stream().filter(
    //                (String s)->{
    //                    boolean result = s.startsWith("张");
    //                        return result;
    //                }
    //        ).forEach(s-> System.out.println(s));
    ​
            list.stream().filter(s ->s.startsWith("张")).forEach(s-> System.out.println(s));
    ​
        }
    }

  • limit&skip代码演示

    public class StreamDemo02 {
        public static void main(String[] args) {
            //创建一个集合,存储多个字符串元素
            ArrayList<String> list = new ArrayList<String>();
    ​
            list.add("林青霞");
            list.add("张曼玉");
            list.add("王祖贤");
            list.add("柳岩");
            list.add("张敏");
            list.add("张无忌");
    ​
            //需求1:取前3个数据在控制台输出
            list.stream().limit(3).forEach(s-> System.out.println(s));
            System.out.println("--------");
    ​
            //需求2:跳过3个元素,把剩下的元素在控制台输出
            list.stream().skip(3).forEach(s-> System.out.println(s));
            System.out.println("--------");
    ​
            //需求3:跳过2个元素,把剩下的元素中前2个在控制台输出
            list.stream().skip(2).limit(2).forEach(s-> System.out.println(s));
        }
    }

  • concat&distinct代码演示

    public class StreamDemo03 {
        public static void main(String[] args) {
            //创建一个集合,存储多个字符串元素
            ArrayList<String> list = new ArrayList<String>();
    ​
            list.add("林青霞");
            list.add("张曼玉");
            list.add("王祖贤");
            list.add("柳岩");
            list.add("张敏");
            list.add("张无忌");
    ​
            //需求1:取前4个数据组成一个流
            Stream<String> s1 = list.stream().limit(4);
    ​
            //需求2:跳过2个数据组成一个流
            Stream<String> s2 = list.stream().skip(2);
    ​
            //需求3:合并需求1和需求2得到的流,并把结果在控制台输出
    //        Stream.concat(s1,s2).forEach(s-> System.out.println(s));
    ​
            //需求4:合并需求1和需求2得到的流,并把结果在控制台输出,要求字符串元素不能重复
            Stream.concat(s1,s2).distinct().forEach(s-> System.out.println(s));
        }
    }

理论理解:
中间操作方法就是“加工步骤”。它们每次调用后都会返回一个新的Stream对象,并能继续后续操作,支持链式风格:

  • filter() 用于条件筛选;

  • limit()skip() 控制元素范围;

  • concat() 用于合并多个流;

  • distinct() 则实现去重。

企业实战理解:

  • 字节跳动: 视频审核流程中,通过filter()过滤违规内容,结合distinct()去除重复举报数据。

  • 美团: 商家商品列表用skip()limit()实现高性能分页。

  • Google: 内部数据流处理中常用concat()将多个来源的数据合并分析。

 

面试题3:Stream流的中间操作有哪些?请说明作用及典型应用。

参考答案:

中间操作方法的核心作用是对数据进行筛选、变换、组合等“加工”操作,主要包括:

  • filter(Predicate):过滤流中满足条件的元素。

  • map(Function):将每个元素映射为新形式(如类型转换)。

  • limit(long n):截取前n个元素。

  • skip(long n):跳过前n个元素。

  • distinct():去重。

  • sorted() / sorted(Comparator):自然排序或自定义排序。

  • flatMap(Function):扁平化处理,处理嵌套结构(如集合中的集合)。

典型应用场景:

  • filter:筛选满足业务规则的用户数据(如年龄>18)。

  • map:提取商品对象中的价格字段。

  • limit:实现分页查询的前n条数据。

  • skip:跳过已处理的数据块,实现分页的“下一页”功能。

  • distinct:防止重复数据入库。

大厂实战补充(字节/美团/腾讯):
字节的搜索系统用filter实现关键词精确过滤;美团外卖用distinct去重骑手任务单;腾讯视频用map批量提取视频播放量。

场景题3:字节跳动视频评论分析系统

题目:

字节跳动的视频后台中,每条视频对应List<Comment>评论对象,Comment对象有:

  • String userName

  • String content

  • int likeCount

需求:

1️⃣ 提取点赞数大于100的评论内容;
2️⃣ 只保留用户名以“王”开头的评论;
3️⃣ 合并这两类评论的内容并去重,统计总数量。

参考答案:

List<Comment> comments = ... // 模拟评论列表

// 1. 点赞数大于100的评论内容
Stream<String> likedComments = comments.stream()
    .filter(comment -> comment.getLikeCount() > 100)
    .map(Comment::getContent);

// 2. 用户名以“王”开头的评论内容
Stream<String> wangComments = comments.stream()
    .filter(comment -> comment.getUserName().startsWith("王"))
    .map(Comment::getContent);

// 3. 合并去重统计
List<String> finalComments = Stream.concat(likedComments, wangComments)
    .distinct()
    .collect(Collectors.toList());

System.out.println("符合条件的评论数量: " + finalComments.size());
System.out.println("评论内容列表: " + finalComments);

思路解析:

  • 两次filter逻辑区分“点赞数”与“用户名”条件

  • map将对象转为字符串内容

  • 合并(concat)和去重(distinct)是精髓

  • 字节跳动/抖音经常有这类“评论分析”需求

 

 

2.4Stream流终结操作方法【应用】

  • 概念

    终结操作的意思是,执行完此方法之后,Stream流将不能再执行其他操作

  • 常见方法

    方法名说明
    void forEach(Consumer action)对此流的每个元素执行操作
    long count()返回此流中的元素数
  • 代码演示

    public class MyStream5 {
        public static void main(String[] args) {
            ArrayList<String> list = new ArrayList<>();
            list.add("张三丰");
            list.add("张无忌");
            list.add("张翠山");
            list.add("王二麻子");
            list.add("张良");
            list.add("谢广坤");
    ​
            //method1(list);
            
    //        long count():返回此流中的元素数
            long count = list.stream().count();
            System.out.println(count);
        }
    ​
        private static void method1(ArrayList<String> list) {
            //  void forEach(Consumer action):对此流的每个元素执行操作
            //  Consumer接口中的方法void accept(T t):对给定的参数执行此操作
            //在forEach方法的底层,会循环获取到流中的每一个数据.
            //并循环调用accept方法,并把每一个数据传递给accept方法
            //s就依次表示了流中的每一个数据.
            //所以,我们只要在accept方法中,写上处理的业务逻辑就可以了.
            list.stream().forEach(
                    new Consumer<String>() {
                        @Override
                        public void accept(String s) {
                            System.out.println(s);
                        }
                    }
            );
          
            System.out.println("====================");
            //lambda表达式的简化格式
            //是因为Consumer接口中,只有一个accept方法
            list.stream().forEach(
                    (String s)->{
                        System.out.println(s);
                    }
            );
            System.out.println("====================");
            //lambda表达式还是可以进一步简化的.
            list.stream().forEach(s->System.out.println(s));
        }
    }

理论理解:
终结操作是流的“收尾”,一旦调用流就会被消费,不可再用。最典型的终结方法:

  • forEach():用于遍历并执行操作。

  • count():统计流中元素数量。

企业实战理解:

  • 字节跳动: 审核平台用forEach()把内容逐条输出到日志。

  • 阿里云: 在后台服务中用count()快速统计符合条件的实例数,监控健康状态。

  • OpenAI:forEach()遍历模型日志,提取高风险请求。

 

面试题4:终结操作和中间操作的区别是什么?

参考答案:

  • 中间操作:

    • 返回Stream对象,允许链式调用。

    • 特点是“懒执行”,只有在遇到终结操作时才真正开始执行。

    • 例如:filter、map、limit、distinct等。

  • 终结操作:

    • 返回具体的值(如long、List、Map等)或执行具体动作(如forEach输出),不会再返回Stream对象。

    • 一旦执行终结操作,流就会被“消费”,无法再次使用。

    • 例如:forEach、count、collect、reduce等。

大厂考点提示(阿里/字节/Google):
大厂面试会经常提问Stream的懒执行机制和流不可重用特性,重点是能否解释“中间操作只定义流水线,终结操作才触发执行”的本质。

 

2.5Stream流的收集操作【应用】

  • 概念

    对数据使用Stream流的方式操作完毕后,可以把流中的数据收集到集合中

  • 常用方法

    方法名说明
    R collect(Collector collector)把结果收集到集合中
  • 工具类Collectors提供了具体的收集方式

    方法名说明
    public static <T> Collector toList()把元素收集到List集合中
    public static <T> Collector toSet()把元素收集到Set集合中
    public static Collector toMap(Function keyMapper,Function valueMapper)把元素收集到Map集合中
  • 代码演示

    // toList和toSet方法演示 
    public class MyStream7 {
        public static void main(String[] args) {
            ArrayList<Integer> list1 = new ArrayList<>();
            for (int i = 1; i <= 10; i++) {
                list1.add(i);
            }
    ​
            list1.add(10);
            list1.add(10);
            list1.add(10);
            list1.add(10);
            list1.add(10);
    ​
            //filter负责过滤数据的.
            //collect负责收集数据.
                    //获取流中剩余的数据,但是他不负责创建容器,也不负责把数据添加到容器中.
            //Collectors.toList() : 在底层会创建一个List集合.并把所有的数据添加到List集合中.
            List<Integer> list = list1.stream().filter(number -> number % 2 == 0)
                    .collect(Collectors.toList());
    ​
            System.out.println(list);
    ​
        Set<Integer> set = list1.stream().filter(number -> number % 2 == 0)
                .collect(Collectors.toSet());
        System.out.println(set);
    }
    }
    /**
    Stream流的收集方法 toMap方法演示
    创建一个ArrayList集合,并添加以下字符串。字符串中前面是姓名,后面是年龄
    "zhangsan,23"
    "lisi,24"
    "wangwu,25"
    保留年龄大于等于24岁的人,并将结果收集到Map集合中,姓名为键,年龄为值
    */
    public class MyStream8 {
        public static void main(String[] args) {
            ArrayList<String> list = new ArrayList<>();
            list.add("zhangsan,23");
            list.add("lisi,24");
            list.add("wangwu,25");
    ​
            Map<String, Integer> map = list.stream().filter(
                    s -> {
                        String[] split = s.split(",");
                        int age = Integer.parseInt(split[1]);
                        return age >= 24;
                    }
    ​
             //   collect方法只能获取到流中剩余的每一个数据.
             //在底层不能创建容器,也不能把数据添加到容器当中
    ​
             //Collectors.toMap 创建一个map集合并将数据添加到集合当中
    ​
              // s 依次表示流中的每一个数据
    ​
              //第一个lambda表达式就是如何获取到Map中的键
              //第二个lambda表达式就是如何获取Map中的值
            ).collect(Collectors.toMap(
                    s -> s.split(",")[0],
                    s -> Integer.parseInt(s.split(",")[1]) ));
    ​
            System.out.println(map);
        }
    }

理论理解:
Stream流不仅能处理数据,还可以通过collect()方法把数据“收回来”。常见收集器:

  • Collectors.toList() → 收集到List

  • Collectors.toSet() → 收集到Set

  • Collectors.toMap() → 收集到Map

这让Stream既有“计算力”又有“存储力”。

企业实战理解:

  • 腾讯云: 大规模日志分析后,用toList()封装成分页对象。

  • 京东: 使用toSet()快速去重SKU列表,提高数据清洁度。

  • 阿里巴巴: 将订单数据通过toMap()聚合为“订单号→详情”的映射关系。

 

面试题5:Stream流为什么是“懒执行”?它是怎么实现的?

参考答案:

Stream流的“懒执行”是指中间操作不会立即执行,而是等到终结操作执行时才开始计算。这是为了提高性能,避免不必要的中间结果计算,并支持优化操作(如短路操作limit、findFirst)。

其实现依赖于:

  • 内部维护了一个操作链(Pipeline):每次中间操作都会将操作逻辑加入到Pipeline中,而不是立刻执行。

  • 只有遇到终结操作时才触发执行:Stream内部会遍历整个Pipeline链条,将数据源中的元素依次通过各个中间操作处理,最后汇聚到终结方法。

大厂实战补充(腾讯/阿里):
腾讯面试会追问:为什么limit可以优化处理性能?因为流是一次一批处理的(惰性求值),当limit满足条件后后续数据根本不会加载,提高了效率。

 

2.6Stream流综合练习【应用】

  • 案例需求

    现在有两个ArrayList集合,分别存储6名男演员名称和6名女演员名称,要求完成如下的操作

    • 男演员只要名字为3个字的前三人

    • 女演员只要姓林的,并且不要第一个

    • 把过滤后的男演员姓名和女演员姓名合并到一起

    • 把上一步操作后的元素作为构造方法的参数创建演员对象,遍历数据

    演员类Actor已经提供,里面有一个成员变量,一个带参构造方法,以及成员变量对应的get/set方法

  • 代码实现

    演员类

    public class Actor {
        private String name;
    ​
        public Actor(String name) {
            this.name = name;
        }
    ​
        public String getName() {
            return name;
        }
    ​
        public void setName(String name) {
            this.name = name;
        }
    }

    测试类

    public class StreamTest {
        public static void main(String[] args) {
            //创建集合
            ArrayList<String> manList = new ArrayList<String>();
            manList.add("周润发");
            manList.add("成龙");
            manList.add("刘德华");
            manList.add("吴京");
            manList.add("周星驰");
            manList.add("李连杰");
      
            ArrayList<String> womanList = new ArrayList<String>();
            womanList.add("林心如");
            womanList.add("张曼玉");
            womanList.add("林青霞");
            womanList.add("柳岩");
            womanList.add("林志玲");
            womanList.add("王祖贤");
      
            //男演员只要名字为3个字的前三人
            Stream<String> manStream = manList.stream().filter(s -> s.length() == 3).limit(3);
      
            //女演员只要姓林的,并且不要第一个
            Stream<String> womanStream = womanList.stream().filter(s -> s.startsWith("林")).skip(1);
      
            //把过滤后的男演员姓名和女演员姓名合并到一起
            Stream<String> stream = Stream.concat(manStream, womanStream);
      
            // 将流中的数据封装成Actor对象之后打印
            stream.forEach(name -> {
                Actor actor = new Actor(name);
                System.out.println(actor);
            }); 
        }
    }

理论理解:
这个案例体现了Stream的灵活性:

  • 多个过滤条件

  • 不同数据源的合并

  • 转换成对象并打印输出
    它把流的全流程(生成 → 中间 → 终结)都串了起来。

企业实战理解:

  • 美团外卖: 筛选活跃骑手+高评分商家,并把他们封装成任务对象派单。

  • 滴滴: 聚合司机和乘客数据,过滤特定条件后生成行程单。

  • OpenAI: 结合多源API日志,把筛选出的异常接口封装成告警对象推送。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值